NOSEMA DISEASE OF HONEYBEE QUEENS
(APIS MELLIFICA L.)

J. LOSKOTOVA, M. PEROUTKA*, V. VESELY*
Agricultural Apprentice School, 538 25 Nasavrky u Chrudimi, Czechoslovakia

SUMMARY

The feasibility of coprological examination for nosema disease was studied in 442 young queens. Possible age-linked resistance of queens was investigated by selecting 50 aged from 1 to 10 days and infecting them with spores of the protozoan Nosema apis Z. The quantity of spores eliminated with the faeces was then determined.

Experiments showed an infestation rate of 18.4 % amongst queens taken from nuclei (206 queens examined) and an infestation rate of 9.1 % amongst queens reared in the bee flight room (186 queens examined). Queens 1 to 10 days old inoculated with nosema spores showed no indication of age-linked resistance to the disease. Taking into consideration the high degree of the nosema infestation of young queens, their average life-span of 25.3 days, and the improbability of young queens recovering, we believe that nosema disease is the main cause underlying requeening in colonies where a queen has already been accepted.

Experiments under the hygienic standardized conditions of the bee flight room proved conclusively that the incidence of nosema disease can be reduced by applying strict prophylactic measures (particularly the use of comb foundations instead of finished combs and the stocking the nuclei with young bees hatched in an incubator).

INTRODUCTION

The problem of nosema disease has mostly been associated with worker bees, whereas drones and queens are generally considered to be more resistant or less susceptible to infection and the danger to them appears to have been somewhat underestimated. Although experiments by other researchers have proved that nosema can infect also the drones (BAILEY, 1972) and queens (POLTEV, 1960; FURGALA, 1962) the results of the examination of queens from nosema-infected colonies indicates that

* Bee Research Institute at Dol, 252 66 Libčice nad Vltavou, Czechoslovakia.
the percentage of diseased queens in colonies is not high. The finding of diseased queens in only about 20-30% of the diseased colonies can be attributed to the resistance of the queens to the disease (FURGALA, 1962) and to the protective system based on the different behaviour of healthy and diseased bees. The nosema-infected bees suffer from an atrophy of the pharyngeal glands, consequently they do not feed the brood and, moreover, they do not accompany the queen (WANG & MOELLER, 1970). The mature queen is normally surrounded by healthy bees preventing her from coming in contact with nosema spores. This is the reason why young queens, which depend on themselves for feeding are more liable to come in contact with spores in the colony (KAUFFELD, 1973).

Nosema disease in queens of different age was studied by BOBRZECKI (1975). He found that in nosema-infected colonies the higher the age of the queens the higher the frequency of nosema disease in them.

The purpose of our present study was firstly to ascertain the degree of nosema infection in the queens dispatched from commercial bee farms producing marketable queens. A simple method for making a preliminary examination of the queens prior to dispatch was sought. Secondly we wished to verify the existence or non-existence of age-linked resistance as described by GONTARSKI (1952) and HANKO (1964), and queens of different ages were inoculated for this purpose. In addition experiments in a bee flight room, using cages equivalent to nuclei, and in the colonies in an apiary were designed to study the possibilities of restoring diseased queens to health.

MATERIAL AND METHODS

Various methods of coprological examination were tested and the most suitable chosen, involved the placement of queens on slides under halves of Petri dishes or 50 ml beakers (Fig. 1). Thermal shock was used with advantage, the slides being cooled in a refrigerator or in a cellar before use. The queens in beakers were placed on the lids of the nuclei. When the queens had calmed down they usually defecated within 5 minutes and only rarely did a queen defecate after longer than 15 minutes. Immediately after capture in the nucleus the queens had to be placed in the prepared beaker. The transfer of the queens to the laboratory implied the possibility of undesired defecation during transportation.

The queens mostly defecated on the slide and therefore the faeces did not need to be handled. When faeces were deposited on the wall of the beaker a sharp jerk was enough to make them drop onto the slide. The excreta of the queens were thin and light yellow in colour. Without any further treatment we covered them with a micro-cover slip and examined them under a microscope at 450 x magnification. In all 206 queens from five different localities and 186 queens from the bee flight room were examined.

The queens in the bee flight room (VESELY, 1977) were studied for nosema disease after natural infection with spores of the protozoan.

Washed and disinfected cages 80 mm x 130 mm x 140 mm in dimension were used to accommodate the queen together with 400 bees either hatched in an incubator and up to 4 days old, or swept from combs with unsealed brood. A part of the brood comb or foundation was placed in the cage. The occupied cages, were then kept in an incubator for a week at 28 °C. When this time had elapsed the queens were artificially inseminated and the cages were exposed in the bee flight room the next day. From the beginning of the experiment ground mixed pollen in an aluminium foil feeder and 66% sugar solution in a
The examination of 206 queens from 5 localities on two farms producing queens for commercial purposes revealed that the morbidity of young queens was high,
ranging from 7.8% in non-laying queens to 29.8% in laying queens. An average of 18.4% of the queens examined were infected by the nosema protozoan. Detailed results are shown in Table 1.

TAB. 1. — The rate of nosema infection in young honeybee queens at the time of dispatch from bee-breeding farms.

<table>
<thead>
<tr>
<th>Locality</th>
<th>No. of queens examined</th>
<th>No. infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>34</td>
<td>8 (23.5%)</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>2 (20.0%)</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>7 (28.0%)</td>
</tr>
<tr>
<td>D</td>
<td>47</td>
<td>14 (29.8%)</td>
</tr>
<tr>
<td>E</td>
<td>90*</td>
<td>7 (7.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>206</td>
<td>38 18.4</td>
</tr>
</tbody>
</table>

* Non-laying queens examined.

In the bee flight room, where 186 queens were examined over a 2-year period, 17 queens were found to suffer from nosema disease, i.e. a morbidity rate of 9.1%. A high degree of nosema infection was ascertained in queens during the first year of the experiments, when the cages were stocked with bees from colonies nursing the young brood and when part of the brood combs were placed in the cages. In this first year 74 queens were examined and 13 of them, i.e. 17.6% were found to be infected.

In the second year of the experiments all cages were stocked with bees up to 4 days of age, hatched in an incubator, and only comb foundations were placed in the cages. Of the 112 queens examined coprologically, only 4 were found to be infected i.e. 3.6%.

Seven of the total number of 17 queens infected with nosema failed to oviposit. Three of these died within 33 days of emergence and the other four were killed and dissected.

The remaining 10 diseased queens started laying eggs about 17.5 days after insemination, whereas in the healthy queens the interval from insemination to the beginning of oviposition averaged 14.2 days. These 10 nosema-infected queens were left in cages and none was found to get rid of the disease. All died after 25.3 days from commencement of oviposition, with an average age of 49.4 days. They exhibited typical symptoms of nosema disease, such as languor, swollen back and cessation of oviposition several days prior to death.

In the experiments to find whether there is resistance to the disease in young queens, the coprological examination of 50 laboratory infected queens proved negative. The experimental groups also showed no significant difference at alpha = 0.01 in the elimination of the spores of nosema in faeces contaminated during the 1st to
10th day of life. At alpha = 0.05 a statistically significant difference was found between the group of queens infected on the 2nd day after emergence and the group of queens infected on the 10th day. The differences between the remaining queen groups were statistically insignificant. The smallest amount of nosema spores was eliminated by queens of the group infected on the 2nd day after emergence (139.78 spores per 1 cu. mm of faeces). The largest amount of the spores was eliminated by queens infected on the 10th day after emergence (379.47 spores per 1 mm³ of faeces). Detailed data are shown in Table 2.

Table 2. — The number of nosema spores in 1 cu. mm of faeces of honeybee queens inoculated at various ages (observation made from 1 to 11 days after inoculation; 5 honeybee queens in each group).

<table>
<thead>
<tr>
<th>Queen’s age at inoculation, days</th>
<th>No. of observations</th>
<th>Mean μ</th>
<th>Standard deviation S_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>302.383</td>
<td>258.393</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>139.78</td>
<td>168.598</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>234.134</td>
<td>297.356</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>307.531</td>
<td>256.392</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>267.126</td>
<td>267.004</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
<td>289.052</td>
<td>312.320</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>195.107</td>
<td>170.503</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>226.570</td>
<td>156.802</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>296.286</td>
<td>232.440</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
<td>379.470</td>
<td>292.166</td>
</tr>
</tbody>
</table>

Fig. 2 shows the amount of nosema spores in 1 mm³ of faeces eliminated from the 3rd to 11th day after infection. As may be seen from the graph, the elimination of the spores continued to increase up to the 8th day after infection and then stabilized.

When checking the possibility of the recovery of diseased queens, it was found that the five queens deposited in August 1974 for overwintering in colonies had been replaced by autumn of the same year.

DISCUSSION

Coprological examination of 206 queens from nuclei revealed the presence of nosema spores in 18.4 % of individuals. The occurrence rate of the disease in Czechoslovakia thus compares with that in other countries (Jay, 1967).

Examination of queens in the field suggested a higher incidence of the disease in laying queens (20 % to 30 %), as distinct from non-laying queens where the occurrence rate was only about 8 %. Similar conclusions had been drawn by Lehnert, Shimanuki & Knox (1973) who ascribed the different infestation rate of young and
older queens to difference in feeding. It is also very probable that under field conditions this factor is combined with the longer stay of laying queens in an infectious environment.

The experiments proved the necessity of using cell foundations and healthy young bees for stocking nuclei in which the queens are to be reared, instead of combs and bees from colonies since these are a potential source of nosema spores. This is proved by the results of the first and second experimental years in the bee flight room where nearly 18% of the queens were infected by the protozoan when combs were used and the nuclei were stocked with bees nursing young brood. On the other hand, only about 4% of the queens suffered from nosema disease when foundations were used and the nuclei cages were stocked with young bees hatched in an incubator. All these queens

![Graph showing the number of spores of Nosema apis Z. eliminated in 1 mm³ of faeces.](image)

Fig. 2. Number of the spores of the protozoan Nosema apis Z. eliminated in 1 mm³ of faeces.
came from a group which was, by mistake, placed in non-disinfected cages from previous experiments.

Taking into account the high incidence of infection in queens dispatched from farms and the length of their life, it can be assumed, as stated by FURGALA (1962), that in Czechoslovakia nosema disease is one of the main causes of the replacement of queens which have already been accepted by the colony.

Unlike FURGALA (1962), we did not find effective resistance in any of the infected queens: no instance of complete recovery was observed. Examination of the faeces of queens of different ages indicated hardly any age-linked resistance to the disease. However, the results may have been partly distorted by the fact that the most severely affected individuals died at the end of the experimental period in a majority of the groups. Another distortive factor may be the higher frequency of defecation in severely infected individuals, leading to a decrease of the number of spores per 1 mm³ of faeces.

On the other hand, a larger quantity of spores in the faeces of older queens might be due to difference in diet of laying and non-laying individuals. Younger queens mostly got glycidic foods whereas proteinaceous food prevailed in the diet of older queens; the proteins may have stimulated development of the protozoan spores in the queens, as it does in bees (PEROUTKA, 1975). In our experiments the older groups of queens infected mostly included queens which were already laying.

CONCLUSION

Experimental sampling indicates that up to 20% of young honeybee queens reared commercially in Czechoslovakia are infected by the protozoan Nosema apis Z. at time of dispatch.

The method of coprological examination of honeybee queens to test for nosema infection is satisfactory and can be recommended as an effective means of surveillance on bee-farms.

Experiments indicate that the high infection rate of nosema in young honeybee queens, their approximately 50-day average lifespan and the improbablity of their recovering from the disease are the main causes in Czechoslovakia for the requeening in colonies where a queen had already been accepted.

Inoculation with nosema spores of 50 queens on the 1st to 10th day after emergence showed no obvious age-linked resistance as described in young bees.

Experiments conducted under hygienically standardized conditions in a bee flight room show that the risk of nosema infection can be significantly reduced by applying strict prophylactic measures (particularly the use of foundations instead of finished combs and by stocking of nuclei with young bees hatched in an incubator).

Received for publication in February 1980.
On a étudié sur 442 jeunes reines s’il était possible d’utiliser l’examen coprologique pour détecter la nosémose. On a recherché une éventuelle résistance des reines liée à l’âge en sélectionnant 50 reines âgées de 1 à 10 jours et en leur inoculant des spores du protozoaire Nosema apis Z. On a alors déterminé la quantité de spores éliminées par les fèces.

Les expériences ont montré un taux d’infestation de 18,4 % parmi les reines provenant des nuclei (206 reines examinées) et un taux de 9,1 % parmi celles élevées en chambre de vol (186 reines examinées). Les reines âgées de 1 à 10 jours, auxquelles on avait inoculé des spores de Nosema, n’ont montré aucun signe de résistance à la maladie liée à l’âge. En tenant compte du fort degré d’infestation des jeunes reines par Nosema, de leur durée moyenne de vie de 25,3 jours et de l’improbabilité pour les jeunes reines de guérir, nous pensons que la nosémose est la principale cause de supersédure chez des colonies qui ont déjà accepté une reine.

Les expériences menées dans les conditions standardisées d’hygiène de la chambre de vol ont prouvé de manière décisive que l’incidence de la nosémose peut être réduite par application de mesures prophylactiques strictes (en particulier en utilisant des feuilles de cire gaufres à la place de rayons construits et en peuplant les nuclei avec de jeunes abeilles écloses en étuve).

ZUSAMMENFASSUNG
NOSEMA-ERKRANKUNG VON BIENENKÖNIGINNEN (APIS MELLIFICA)

Die Experimente ergaben eine Infektionsrate von 18,4 % bei Königinnen aus Begattungskästchen (206 untersuchte Königinnen) und eine Infektionsrate von 9,1 % bei Königinnen, die im Flugraum gezüchtet worden waren (186 Königinnen). Die Königinnen, die im Alter von 1-10 Tagen mit Nosemasporen infiziert worden waren, erbrachten keinen Hinweis auf eine altersabhängige Resistenz gegenüber der Krankheit. Wenn man die grosse Häufigkeit von Nosema-Infektionen von jungen Königinnen in Betracht zieht, ferner ihre durchschnittliche Lebenserwartung von nur 25,3 Tagen und die Unwahrscheinlichkeit, dass junge Königinnen wieder ausheilen, so neigen wir zu der Ansicht, dass die Nosemaerkrankung die Hauptursache für eine Umweiselung bald nach der Annahme einer zugesetzten Königin ist.

REFERENCES

