Microscopic analysis of propolis from Polish regions

Z Warakomska 1*, W Maciejewicz 2

1 Agricultural University, Department of Botany, Akademicka 15, 20950 Lublin;
2 Medical Academy, Department of Inorganic and Analytical Chemistry, Staszica 6 2081, Poland

(Received 5 October 1990; accepted 13 April 1992)

Summary — Ten sediment samples isolated from propolis samples collected in Poland were ex-
amined under the microscope. The sediment was obtained by an extraction method which ensured
preservation of plant tissue structure. Thus in addition to pollen, the secretory discs and other plant
elements were identified in each sample of propolis sediments. These elements were found to be
identical to those isolated from fresh Betula and Alnus leaves. The pollen contents differed in various
propolis samples and reflected the flora of the region of origin. The presence of secretory discs in
the propolis samples confirmed the hypothesis that bees collected oil and resinous substances from
plant surfaces such as the leaves of Betula and Alnus.

INTRODUCTION

According to Küstenmacher (1911) propo-
lis is derived from the balmy portion of the
pollen digested in the honey stomach of
the bee. Another theory maintains that
propolis is collected from the sticky bud
surfaces of poplar, birch and chestnut
trees. Rösch (1927), Cattorini (1963) and
Marletto and Olivero (1981) described the
manner in which bees collect propolis
from poplar buds. The plant origin of pro-
polis has been emphasized both by König
(1985) and Crane (1988). In the literature
reviewed by König (1985), the resinous
excretions of the buds of poplar trees are
mentioned as the main sources of propo-
lis in Europe, South America, West Asia
and North Africa. Trees of secondary im-
potence include the birch, oak, alder, wil-
low and hazel in Europe; the Acacia Kar-
roo tree in South Africa; the grasstree
Xanthorrhoea pressii and X australis in
Australia; and the buds and bark of Plu-
meria accuminata, P acutifolia, Schinus
terebinthifolius and Psidium guajava in
Hawaii.

The presence of pollen in propolis has
been reported by Junkunz (1932), who
found Lupinus, Robinia and Onobrychis
sativa pollen grains in the insoluble por-
tion of propolis. Vanhaelen and Vanhae-
len-Fastre (1979) presented microphoto-
graphs of propolis originating from
different countries in the world, with pollen
grains clearly visible in some of them. Ric-
ciardelli d'Albore (1979) attempted to de-
terminate the geographical origin of propolis
by characterizing propolis samples from
different countries on 5 continents. To ob-
tain sediment, Ricciardelli d’Albore applied the Erdtman acetolysis method (1954) consisting of treating the material with acid and alkali. The sporopollenin contained in pollen grains was resistant to acid and alkali action, while the internal pollen content and cellulosic intine as well as other plant elements were disintegrated (Dyakowska, 1959). When subjected to acetolysis, pollen grains become empty and concave. Only exine, which is saturated by sporopollenin, remained undestroyed: because it is resistant to action by alkali and acids, the surface sculpture of pollen grains was preserved. Ricciardelli d’Albore (1979) determined the pollen of plants in sediments of propolis samples to be characteristic of the flora of particular countries, with allusion (in some cases) to the region in which the samples had been gathered. He also noticed that the colour of propolis was different in particular countries. The samples from regions with a temperate climate were pale brown to dark brown in colour and those from Australia and tropical zones were black. Finnish propolis was orange, and Cuban propolis was dark violet in colour. Ricciardelli d’Albore (1979) was of the opinion that the pollen in propolis sediment is derived from the surrounding flora. It enters the hive via various routes: through atmospheric dust or during the collection of nectar by pollen-covered bees. Parts of pollen pellets or bee bread may also get into propolis in the hive.

The aim of our study was to characterize pollen grains and other components of propolis that are insoluble in water and organic solvents.

MATERIALS AND METHODS

A microscopic examination was carried out on sediments isolated from 10 propolis samples originating from 3 regions in Poland (Lublin, Przemysl and Upper Silesia). The material was prepared for examination according to the method of Warakomska and Maciejewicz (1985). The resulting sediments were composed of the insoluble parts of propolis. The extraction was carried out with 96% ethanol in a 1:5 w/v ratio (ie 5 cm³ of ethanol to 1 g of propolis). Particles of propolis longer than 1–2 mm were used. The mixture was shaken several times, then left to stand at room temperature. After 4 days the ethanol extract was filtered. In some cases, the extraction process was accelerated by adding alcohol in the ratio of 1:20 w/v, placing the material in a mechanical shaker for 5 h with the solvent changed twice. After separating the alcohol by filtration, the residue was treated with 10 vol benzene, shaken for 10 min (in a shaker) then centrifuged. The upper layers were carefully removed. The benzene extraction was repeated 5 times. The last 2 extractions were carried out at 50 °C. The sediment obtained was then extracted twice with 10 vol acetone at 40 °C. The acetone extract was separated by filtration and the residual acetone evaporated. A 5% w/v suspension of the dried sediment in 1:1 mixture of glycerol and water was prepared. The addition of a few drops of 2% NaOH caused a slight swelling of the pollen grains. The suspension was filtered through a strainer with 0.3-mm holes to remove larger sediment fragments, then the suspension was placed between glass microscopic slides to obtain homogeneous smears. Each preparation contained over 300 pollen grains, a number considered by Dyakowska (1959) and Moar (1985) to be sufficiently representative for such examination. Pollen identity was determined for each preparation and the results interpreted by the method of Louveaux et al (1970).

RESULTS AND DISCUSSION

The results of extraction of 3 different propolis samples are given in table I. The dry residue of the ethanol extract (obtained after solvent evaporation) was 55.0–73.9% of the weight of the propolis sample. Benzene + acetone extracted 17.6–31.6% (mainly wax) and the sediment remaining after extraction covered 8.5–13.2%.
An example of analysis of a single sediment of propolis is presented in table II. The microscopic analysis showed the percentage of pollen grains in the sediment of propolis. The main components of the pollen and their abundance in 10 samples of propolis sediments are presented in tables III and IV. About 9–21% of pollen grains in the samples analyzed were extremely deformed and unrecognizable. The most abundant pollen identified was from plants of the family Cruciferae, mainly Brassica, Sinapis and Raphanus, which amounted to 9–33%, Salix pollen was present in all samples: 6–16%, as were lesser amount of pollen from Centaurea cyanus and Trifolium pratense. Small quantities of pollen from weeds, meadow and herbaceous plants and anemophilous trees were found in all preparations (Betula, Alnus, Populus, Urtica, Sax and Rumex). In addition, the sediment contained spores of parasitic fungi (Ustilago, Puccinia and Tilletia).

Leaf fragments of dicotyledonous plants which could be recognised by the presence of stomatal apparatus, skins with thick epithelium, plant hairs and calcium oxalate crystals in the form of druses were frequently found in the sediment.

It was quite surprising to find in all specimens the secretory discs such as those which occur on Betula and Alnus leaves. To identify these elements, microscope control preparations from fresh Betula and Alnus leaves were performed, then measured and drawn by means of a microscopic drawing device. The comparison of discs from propolis and control preparations is presented in figures 1–3. Similar multicellular discoid secreting hairs have been described by Hejnowicz (1980).

These hairs or discs, termed colleters, secrete a mixture of terpenes and mucus. The exudate accumulates in the subcuta-
Table III. Percentage of pollen in 10 propolis samples.

Pollen	A										B								C						
	1	2	3	4	5	6	7	8	9	10	125									10	11	11	9		
Cruciferae	33	27	23	9	22	38	22	23	14	16									13	13					
Salix	16	12	15	8	13	6	9	10	7	9															
Centaurea cyanus	6	7							13	13															
Gramineae									6	10															
Tilia									11	11															
Trifolium pratense	6									6															
Papaver									6																
Pinus									6																
Betula									6																
Achillea type									5																
Urtica									10																
Trifolium repens									8																
Malus type									5																
Fagopyrum										10															
Macerated and recognisable	14	18	10	15	14	15	14	15	21	18	13	9													
Other origin pollen under 5%	25	30	35	48	43	41	37	33	37	36															
No of pollen grains examined	411	349	383	334	352	377	363	369	402	389															
No of secretory discs	20	45	41	49	46	11	17	16	13	14															

A: Upper Silesia; B. Lublin district; C. Przemysl district.

Table IV. Prevalence of pollen grains in 10 propolis samples.

<table>
<thead>
<tr>
<th>Pollen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthriscus type, Centaurea cyanus, Cruciferae, Malus / Prunus type, Papaver a, Salix, Trifolium repens, Trifolium pratense, Gramineae a</td>
</tr>
<tr>
<td>Achillea type, Artemisia a, Fagopyrum, Helianthus type, Pinus a, Taraxacum type, Tilia</td>
</tr>
<tr>
<td>Betula a, Cirsium type, Plantago a, Rubus type, Vicia</td>
</tr>
<tr>
<td>Aesculus, Alnus a, Corylus a, Melilotus</td>
</tr>
<tr>
<td>Chenopodium a, Frangula alnus, Lotus, Secale a</td>
</tr>
<tr>
<td>Caryophyllaceae, Populus a, Rumex a</td>
</tr>
<tr>
<td>Acer pseudoplatanus, Fragaria hort, Majorana type, Ranunculus a, Urtica a</td>
</tr>
<tr>
<td>Aster type, Bellis a, Cannabis a, Juglans regia a, Jacea type, Quercus a, Vaccinium</td>
</tr>
<tr>
<td>Carpinus a, Chamaenerion, Comus, Filipendula a, Juncus a, Lamium type, Myosotis, Partenocissus, Phacelia, Verbascum a, Zea mays a</td>
</tr>
<tr>
<td>Unidentified (16 species)</td>
</tr>
</tbody>
</table>

a plants without nectaries.
neous cavity and once the latter is broken it pours out onto the leaf surface, making it sticky. Similar forms of secretion occur on bud scales and leaf germs of birch, alder and chestnut trees (fig 2). The only substances of birch secretory discs became characteristically red in fresh leaf preparations when treated with the fat reagent Sudan III, and underwent emulsification in NaOH (fig 3).

The smears revealed dark brown plant tissue fragments identical to the secretory glands found on Betula and Alnus leaves. The animal remains contained in the sediment were bee hairs, chitin particles with or without sensillae, Lepidoptera wing scales (perhaps wax moth) and small ants.

CONCLUSION

Acetolysis and homogenization leading to destruction of plant tissue elements used previously were replaced in the present study by an extraction method designed to obtain microscope preparations from propolis sediment. Owing to the extraction method of propolis used in the present research, parts of plants containing cellulosic

Fig 1. Secretory discs: A: from propolis sediment, Corylus avellana L pollen close by; B: from leaves of Betula verrucosa Ehrh. Discs 57.4–69.6 μm in diameter.

Fig 2. A: Alnus secretory discs from propolis sediment; B: Secretory discs from leaves of Alnus glutinosa (L) Gaertn. Discs 80–100 μm.

Fig 3. Secretory discs from leaves of Betula verrucosa Ehrh. A: oil flowing out; Sudan III red-stained; B: emulsification of data following NaOH treatment.
walls were preserved in the sediment. The pollen was therefore less deformed. Resins and wax which were present in propolis were extracted by organic solvents. The tissue of plants was not damaged. The treated pollen was determined according to the recommendation of the International Committee for Bee Botany (Louveaux et al., 1970) currently used for the determination of pollen grains present in honey.

ACKNOWLEDGMENTS

The authors wish to thank E Soczewinski, head of the Department of Inorganic and Analytical Chemistry, for suggestions and for the critical reading of this manuscript.

Résumé — Analyse microscopique de propolis provenant de Pologne. On a effectué l'analyse microscopique de 10 échantillons de propolis provenant de Pologne. La méthode d'extraction utilisée, à base de solvants organiques, a permis d'isoler de la propolis des éléments végétaux insolubles tout en préservant la structure du tissu cellulaire des plantes. Avec la méthode de l'acétolyse, appliquée jusqu'à présent, on utilisait des acides et des bases concentrées qui dissolaient la cellulose. La méthode pour obtenir le sédiment consiste en une extraction complète de la propolis à l'aide de solvants organiques : alcool éthylique à 96% (1:5 poids/vol), puis toluène et finalement acétone. Après filtration et évaporation on obtient le sédiment sec. Les pourcentages des diverses fractions (éthanolique, benzénique + acétionique et sédiment insoluble) sont données dans le tableau I. Le sédiment a été dilué (5% poids/vol) dans un mélange 1:1 de glycérine et l'eau auquel on a ajouté quelques gouttes de NaOH. La suspension a été filtrée avec un filtre de maille 0,3 mm, puis on a montré les préparations entre lame et lamelle. Pour chaque préparation on a compté plus de 300 grains de pollen. Les résultats de l'analyse pollinique ont été interprétés selon Louveaux et al. (1970). Le tableau II donne, à titre d'exemple, l'analyse pollinique d'un échantillon; le tableau III le pourcentage de pollen des 10 échantillons et le tableau IV la fréquence des divers pollens dans les 10 échantillons. Pour la première fois on a trouvé dans tous les échantillons des disques sécrêteurs (figs 1A, 2A). Après comparaison avec des préparations faites à partir de feuilles fraîches de Betula verrucosa et d'Alnus glutinosa (figs 1B, 2B), ces structures se sont révélées semblables à celles qui sont présentes sur les feuilles de Betula ou d'Alnus. Le spectre pollinique caractérise la flore environnante butinée et la période de récolte de la propolis. La présence de disques sécrêteurs confirme l'origine végétale de la propolis.

Propolis / méthode d'extraction / analyse pollinique / disque sécréteur / Alnus / Betula

Die Extraktionsmethode zur Gewinnung von Sediment aus Propolis besteht in der vollständigen Extraktion mit den organi-

Das Pollenbild ist charakteristisch für die Flora der Trachtgegend und die Jahreszeit, in der Propolis gesammelt wurde. Die Sekretionsscheiben bestätigen die pflanzliche Herkunft der Propolis.

REFERENCES

Cattorini PE (1963) La api e gliu uomini (Bees and men). *Filoterapia* 34, 85-93

Erdtman G (1954) *An Introduction to Pollen Analysis*. Waltham, MA, USA

Jungkunz B (1932) Bee’s resin (propolis). *Chem Umschau* 39, 30-33

Küstenmacher (1911) *Propolis*. *Ber Dtsch Pharm Ges* 21 (1), 65-92

Ricciardelli d’Albore G (1979) L’origine géographique de la propolis. *Apidologie* 10 (3) 241-267

Rösch GA (1927) Observations as propolis-collecting bees. *Biol Zentralbl* 47 (2), 113 (in German)

Propolis / Extraktionsmethode / Pollenanalyse / Sekretionshaare / Alnus / Betula