Time-place learning and the ecology of recruitment in a stingless bee, *Trigona amalthea* (Hymenoptera, Apidae)

Michael D. BREED*, Erin M. STOCKER, Laura K. BAUMGARTNER, Stephanie A. VARGAS

Department of Environmental, Population, and Organismic Biology, The University of Colorado, Boulder, CO 80309-0334, USA

(Received 20 September 2000; revised 16 October 2001; accepted 28 November 2001)

Abstract – The stingless bee, *Trigona amalthea* (Olivier), has the ability to associate time and place with feeding. Bees learned to visit a training site during a feeding interval in order to acquire a reward. A lengthy period of anticipatory visits to the training site preceded the feeding interval. When a reward was not presented, visitation was high preceding and during the feeding interval but was rare following the feeding interval, behavior indicative of time-place learning. Additionally, we demonstrate that *T. amalthea* scouts recruit other workers to nectar baits, however, there is no relationship between the flight time to the colony and either the number of visits prior to recruitment or the number of workers recruited. Due to territoriality in this species, foraging ranges are truncated so that the expected reductions of foraging effort at the margins of the foraging territory are not observed. In *T. amalthea* a combination of time-place learning and recruitment allow for rapid mobilization of workers when food is available.

stingless bee / Meliponinae / *Trigona* / foraging / learning / recruitment

1. INTRODUCTION

We present studies on time-place learning and on the recruitment system of a meliponine (stingless) bee, *Trigona amalthea* (Olivier). When combined, time-place learning and recruitment give a distinct advantage in competition with other species that lack these abilities. To our knowledge, time-place learning has not been investigated in stingless bees. Additionally, while recruitment is well known in stingless bees (Roubik, 1989; Nieh, 1999) and has been demonstrated in *Trigona amalthea* (Kerr et al., 1963), most studies of stingless bee recruitment have focused on
the mechanism of recruitment (Lindauer and Kerr, 1960), rather than on the ecological correlates of recruitment which we investigate.

Time-place learning, an association between time and place in foraging, can be an important component of efficient foraging. Animals that can learn when and where to expect resources out-compete animals that must rediscover a resource each time it is renewed. Time-place learning may be common in both eusocial and solitary insects, but has been studied only in the honey bee \textit{(Apis mellifera} L.), in which it is well known (Aschoff, 1986; Frisch and Aschoff, 1987; Gould, 1987a; Gould, 1987b; Moore and Rankin, 1985), and in ectatommine ants (Beugnon et al., 1996; Harrison and Breed, 1987; Schatz et al., 1994; Schatz et al., 1999).

One of the principal benefits of sociality that eusocial insects have over their solitary counterparts is the sharing of information among foraging individuals. Information concerning the location of food resources can be conveyed by a scout directly leading a recruit to a food source, as in tandem running ants (Möglich et al., 1974) and some stingless bees (Lindauer and Kerr, 1960), by a scout laying an odor trail that is followed by recruits, exemplified by many termites (Pasteels and Bordereau, 1998) and many ants (Vander Meer and Alonso, 1998), or by complex coded signals, such as the dances of the honey bee (Von Frisch, 1967) and a stingless bee (Nieh, 1998; Nieh, 1999). Recruitment may be tuned to features usually considered in optimal foraging models, such as time or effort to reach a resource, and the nutritive value of the resource (Breed et al., 1996; Fewell et al., 1996). In addition, distance of the resource from the colony is sometimes considered to be a reflection of time or effort (Von Frisch, 1967).

Our first objective was to test the hypothesis that \textit{T. amalthea} workers can use time-place learning to find renewed resources. Our second objective was to determine if there is a relationship between travel time from a resource to a colony and the number of bees recruited or the number of scouting trips prior to recruitment. Answering these questions increases the depth of our understanding of stingless bee foraging strategies.

2. MATERIALS AND METHODS

We observed \textit{Trigona amalthea} at the La Selva Biological Station, Sarapiqui Canton, Heredia Province, Costa Rica during the dry season, 1997. Bait stations, established approximately 1.5 meters above ground, consisted of a paper towel hung vertically from a string tied between two trees. In order to lure \textit{T. amalthea}, we saturated the paper towel with a 40\% honey solution, a concentration level that was attractive to bees in initial observations. Using these bait stations, we conducted time-place learning and recruitment experiments.

2.1. Time-place learning

We used two sets of four bait stations, each set within the foraging territory of a single \textit{T. amalthea} colony. The distance between the two sets was more than 1 km. Honey solution served as bait at each station for a single thirty min period at the same time each day for three consecutive days. At the end of the baiting period, we replaced the wet paper towel with a dry towel that remained at the bait station until the following day when it was re-baited. The paper towel was not baited on the fourth day in order to determine if the bees had learned the baiting time.

The total number of bees observed either in direct contact with the paper towel or flying within 0.5 meters of the towel was recorded every 3 min for at least 90 min. On day one observations began at the
beginning of the baiting period; control observa-
tions prior to bait placement indicated that no bees were flying in the area where the bait was to be placed. On days 2 and 3 observations began 0.5 h before the bait was presented so that the arrival of bees prior to bait presentation could be recorded. On day four this early observation period was extended to 1.0 h prior to the schedule bait time. Also on day four, observations were terminated 0.5 h after the bait time because no bees remained in the area. For statistical purposes, we divided the total observation time into 15 min intervals and recorded the maximum number of bees present during the interval. This resulted in the 90 min observation period being divided into six 15 min observation periods.

2.2. Recruitment

We observed recruitment at 21 bait stations representing 3–4 *T. amalthea* colonies. After saturation of the paper towel with honey solution we observed the station area. When a *T. amalthea* worker landed directly on the bait we noted the time of arrival and marked this scout with a dot of paint (Testor’s enamel) on the thorax, abdomen, wing or leg for future identification. Each potential scout that landed on the paper was marked until a recruitment event was observed. Recruitment was defined as the arrival of a previously marked bee at the baiting station accompanied by one or more unmarked bees.

The following variables were recorded: the arrival times of potential scouts, the number of potential scouts that visited the station before recruitment occurred, the time away from the bait station (indicating approximate distance to colony), the mean number of visits by one scout and the number of recruits brought with each individual scout visit. Observations continued until either an hour had passed without any signs of recruitment or the bees were so numerous that efficient counts could no longer be taken.

2.3. Data analysis

The data were analyzed using StatView (Version 4.1, 1992-4 Abacus Concepts, Inc.).

3. RESULTS

3.1. Time-place learning

The total number of bees in the vicinity of the bait station increased during the baiting period (Fig. 1). In the third, fourth and

Figure 1. Total number of *T. amalthea* at each time period on days 1 through 4 in the time-place learning experiment. The maximum number of bees observed during each 15 min intervals is indicated. We baited the stations with a 40% honey solution during intervals 2 and 3. Asterisks (*) indicate significant differences in number of *T. amalthea*.
fifth time intervals there were significant differences in the total number of bees in the bait station vicinity between days 1, 2, 3 and 4 (F = 8.51, P = 0.0004; F = 3.8, P = 0.024; F = 4.3, P = 0.016). This indicates place learning but does not demonstrate time-place learning.

To determine if *T. amalthea* are capable of time-place learning, we compared the mean number of bees on day 4 in the vicinity of the bait station prior to and during feeding (first, second, and third intervals) to the mean number of bees in the bait station vicinity following the feeding interval (fourth, fifth and sixth intervals) (Fig. 2). If a time-place association formed, we expected more *T. amalthea* at the bait station during intervals 1 through 3, regardless of the absence of food. There were significantly more bees in the bait station vicinity during intervals 1–3 than intervals 4–6 (Mann-Whitney U, P < 0.05).

Additionally, anticipation of the feeding interval is indicative of time-place learning behavior. In order to determine if anticipation occurred on day 4, the test day, we compared the mean number of *T. amalthea* present at the bait station during interval 1 to a hypothesized mean of 0, the number of bees that would randomly be found at any given location and time. We found significantly more bees than 0 present in the bait station vicinity during interval 1 (one sample t-test, t = 4.13, 8 d.f.; P = 0.003).

3.2. Recruitment

We determined the time the first scout took to discover a feeding station, the number of scouts discovering the station, flight time between the station and the nest, number of visits per scout, and the number of recruits (Tab. I). If *T. amalthea* forages based on standard cost-benefit strategies, we would expect to find a significant negative correlation between the time potential scouts spend away from the bait station (indicative of the distance to the colony) and the number of bees that are recruited. However, there was no significant correlation.

Time (minutes) to discovery of station, first scout	5.5 ± 1.17	n = 23
Number of scouts discovering station	3.1 ± 0.29	n = 23
Flight time (minutes) from departure of scout to return	5.3 ± 0.55	n = 21
Number of visits per scout	3.3 ± 0.28	n = 22
Number of recruits	9.1 ± 2.29	n = 22

Figure 2. Comparison of the mean number of *T. amalthea* in the vicinity of the bait stations on day 4 before and during the feeding interval to the intervals following the feeding interval. Bars indicate the standard errors of the means. There is a significant (P < 0.05) difference between interval 1–3 and intervals 4–6, indicated by the * in the figure.

Table I. Recruitment characteristics of *T. amalthea* (n = 23 bait stations, sample sizes for individual variables given in table), means ± SE.
between flight time and number of recruits
\(r = 0.40, P = 0.09 \) or between any of the
other pairs of variables.

The number of scouts was recorded in
23 cases. In five of these cases no recruit-
ment occurred, but there was no significant
difference when the cases are divided into
those with and without recruitment for
flight time \((F = 1.07, P = 0.32) \) or discov-
ery time \((F = 0.27, P = 0.61) \). Of the
six baits at which discovery was delayed for
more than five min recruitment took place
at four (66.7%), which was only slightly
less often than the 81.3% of cases with
shorter flight times that had recruitment \(\chi^2
,
P = 0.87 \).

4. DISCUSSION

We show that \textit{T. amalthea} workers asso-
ciate the presentation of food at a location
with the time of presentation. To date such
an ability has only been demonstrated in a
small number of insect species, all of which
are eusocial Hymenoptera. Like most nest-
ing Hymenoptera, \textit{T. amalthea} workers
have a well developed ability to learn food
locations and to return to those locations
repeatedly; the unique aspect of our find-
ings is the ability of these bees to associate
place with time. In addition, we found that
the number of foragers responding to a
feeding station did not vary with distance
from the colony. This lack of response to in-
creased time and energy invested in visiting
the stations that distant from the nest is con-
sistent with the model of foraging territо-
ries for this species proposed by Breed et al.
(1999).

The total number of bees present on
day 4 in the time-place learning experiment
is substantially lower than the other days,
due to the lack of recruitment (Fig. 1) that
day. Thus our comparisons focus on the be-
havior a small number of scout bees, which
we hypothesize have learned the time and
place that food has appeared on previous
days. The most convincing argument that
time-place learning is exhibited by this spe-
cies is the simple fact that bees appear at all
at the test location when no bait is present.

The ability to learn time in association
with a feeding location may be widespread
in the nesting Hymenoptera. Future studies
that emphasize cross-species comparisons
will resolve this point. The discovery of
time-place learning in both ants and bees
suggests that, at least in the Hymenoptera, it
may be relatively easy for insects to associ-
ate spatial learning with either an internal or
external clock. Tests for time-place learn-
ing in a broader range of insects will reveal
whether such learning is deeply rooted in
the insect phylogeny, or if this ability has
evolved independently in a number of taxa.

\textit{Schatz et al.} (1994, 1999) and
\textit{Fourcassie et al.} (1999) have argued that an
animal’s ability to return on a regular
schedule to a single location is not adequate
to test the hypothesis of time-place learn-
ing. Most of the hypotheses concerning the
timekeeping mechanisms used by animals
in time-place learning assume that a series
of times and locations can be learned
(Wilkie and Wilson, 1995). However, so-
cial insect workers may specialize on single
resource types or single resource patches;
they are able to serve appropriate foraging
functions by learning only one time and lo-
cation. Thus, more elaborate learning
schedules can be biologically irrelevant.
The more stringent criteria suggested by
\textit{Schatz et al.} (1999) and \textit{Fourcassie et al.}
(1999) are interesting in establishing corre-
lates with solitary foragers, such as pigeons
(Wilkie and Wilson, 1995), but learning a
single time and location clearly meets a rea-
sonable standard for time-place learning.

Our recruitment results suggest that
\textit{T. amalthea} do not conform to optimal for-
aging strategies, which predict a diminis-
ment of foraging effort as the costs of
foraging increase (Breed et al., 1996;
Charnov, 1976). Breed et al. (1999) propose
that \textit{T. amalthea} workers forage in
territories that are limited in size by interactions with conspecifics from adjacent territories. We interpret our results as indicating that foraging home ranges are truncated by territorial boundaries to the extent that the expected reduction in foraging effort at the extreme limits of the home ranges are not observed.

The number of bees at the baits diminished between the third and fourth intervals, even though food was present until the end of the third interval. This was probably due to the fact that an initial group of recruits, present in the second time interval, had returned to their nest and had not yet appeared at the bait on a second foraging trip. Lacking the positive feedback of continued food, the number of foragers continued to decline through the later time periods.

These results raise several interesting questions for future work. Comparative studies of other Hymenoptera will resolve the issue of the phylogeny of time-place learning and the underlying mechanisms (for example, the use of an internal or external clock) which are used to accomplish it. Territoriality in stingless bees needs further exploration, as such constraints on foraging and colony distribution raise interesting issues in the conservation of these bees and the plants that they pollinate.

ACKNOWLEDGEMENTS

We thank the Organization for Tropical Studies for the use of the facilities at La Selva Biological Station. Terry McGlynn provided helpful comments on a draft of this manuscript.

Résumé – Apprentissage de l’association temps-lieu et écologie du recrutement chez une abeille sans aiguillon, *Trigona amalthea* (Hymenoptera, Apidae). L’apprentissage de l’association temps-lieu est un mécanisme complexe important pour les animaux qui exploitent des ressources que l’on peut temporairement prédire, telles que le nectar des fleurs. Les butineuses qui apprennent quand et où trouver des ressources peuvent répartir efficacement leur temps et leur effort de butinage. Alors que ce phénomène est bien connu chez les abeilles domestiques (*Apis mellifera* L.) et chez certaines fourmis, on ne sait pas grand chose des capacités d’apprentissage temps-lieu chez les autres insectes sociaux.

Nous avons étudié cette question chez l’abeilles sans aiguillon, *Trigona amalthea* (Olivier). Les ouvrières ont appris à visiter un site de nourrissage durant 30 minutes à la même heure chaque jour pendant 3 jours pour obtenir une récompense. Des visites sur le site précédentaient la période de nourrissage. En l’absence de récompense, les visites étaient élevées avant et pendant la période habituelle de nourrissage, mais rares après. Le comportement d’anticipation est une preuve forte de l’apprentissage du temps-lieu puisqu’il n’y a pas de signal indiquant que de la nourriture va apparaître pour attirer les butineuses. Apparemment seules les éclaireuses se lancent dans l’apprentissage du temps-lieu, puisque le nombre d’abeilles présentes sur les stations était relativement faible jusqu’à ce que de la nourriture soit réellement offerte. Une fois que la nourriture est là, les éclaireuses recrutent des butineuses en grand nombre.

Nous avons étendu notre recherche au comportement de recrutement de *T. amalthea*. Les éclaireuses ont trouvé les stations de nourrissage rapidement, cinq minutes environ après leur installation. Le nombre moyen d’éclaireuses trouvant les stations a été légèrement au-dessus de trois et chaque éclaireuse a visité la station de nourrissage plusieurs fois au cours d’une heure d’observation. Les éclaireuses ont recruté en moyenne neuf autres ouvrières si bien que de nombreuses ouvrières ont pu prendre part à la récolte de nourriture. Chez certaines espèces d’insectes sociaux qui recrutent des ouvrières pour la nourriture, le nombre de recrues dépend de
la distance entre la source de nourriture et le nid. Mais chez *T. amalthea* nous n’avons pas trouvé de relation entre la durée de vol jusqu’à la colonie et le nombre de visites faites par les éclaireuses à la station avant le recrutement. Nous n’avons pas trouvé non plus de relation entre le nombre d’ouvrières finalement recrutées.

Chez *T. amalthea* une combinaison de l’apprentissage du temps-lieu et du recrutement permet de mobiliser rapidement des ouvrières lorsque une source de nourriture devient disponible. La compétition alimentaire entre les colonies peut être intense et les colonies qui trouvent et exploitent rapidement les ressources ont un avantage dans la compétition. La preuve de l’apprentissage du temps-lieu chez *T. amalthea* soulève la question de savoir si ce mécanisme est largement répandu parmi les espèces d’abeilles.

Meliponinae / abeille sans aiguillon / Trigona / butinage / apprentissage / recrutement

Zusammenfassung – Zeit-Orts-Lernen und die Ökologie des Rekrutierens bei der Stachellosen Biene *Trigona amalthea*. Zeit-Orts-Lernen ist für Tiere, die an zeitlich vorhersagbaren Quellen nach Futter, wie z.B. Blütennektar, suchen, ein wichtiger Verhaltensmechanismus. Futtersuchende Tiere, die lernen, wo und wann Nahrungsquellen zu finden sind, können die Zeit und die Arbeit, die sie für die Futtersuche aufwenden, effizienter einteilen. Während dieses Phänomens bei Honigbienen und einigen Ameisen gut bekannt ist, weiß man über die Fähigkeit des Zeit-Orts-Lernens bei anderen sozialen Insekten wenig.

Stachellose Bienen / Meliponinae / Trigona / Futtersuche / Lernen / Rekrutierung

REFERENCES

