Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Comprehensive Approach to Phenotype Varroa destructor Reproduction in Honey Bee Drone Brood and Its Correlation with Decreased Mite Reproduction (DMR)

Regis Lefebre, David Claeys Bouuaert, Emma Bossuyt, Lina De Smet, Marleen Brunain, Ellen Danneels and Dirk C. de Graaf
Insects 15 (6) 397 (2024)
https://doi.org/10.3390/insects15060397

Varroa destructor resistance to tau‐fluvalinate: relationship between in vitro phenotypic test and VGSC L925V mutation

Gabrielle Almecija, Marion Schimmerling, Aurélie Del Cont, Benjamin Poirot and Véronique Duquesne
Pest Management Science 78 (12) 5097 (2022)
https://doi.org/10.1002/ps.7126

Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies

Cameron J Jack, James D Ellis and Hongmei Li-Byarlay
Journal of Insect Science 21 (5) (2021)
https://doi.org/10.1093/jisesa/ieab058

Viruses that affect Argentinian honey bees (Apis mellifera)

Marcos D. Salina, María L. Genchi Garcia, Bárbara Bais, et al.
Archives of Virology 166 (6) 1533 (2021)
https://doi.org/10.1007/s00705-021-05000-6

Latest Information on the Ecology of the Ectoparasitic Mite Varroa destructor(Mesostigmata: Varroidae)and the Resistance of Its Host, Honey Bees(Hymenoptera: Apidae)

Yoshiko Sakamoto
Japanese Journal of Applied Entomology and Zoology 65 (2) 71 (2021)
https://doi.org/10.1303/jjaez.2021.71

Varroa destructor rearing in laboratory conditions: importance of foundress survival in doubly infested cells and reproduction of laboratory-born females

Vincent Piou and Angélique Vétillard
Apidologie 51 (6) 968 (2020)
https://doi.org/10.1007/s13592-020-00775-0

Selection for outbreeding in Varroa parasitising resistant honey bee (Apis mellifera) colonies

Benjamin H. Conlon, Chedly Kastally, Marina Kardell, John Kefuss, Robin F. A. Moritz and Jarkko Routtu
Ecology and Evolution 10 (14) 7806 (2020)
https://doi.org/10.1002/ece3.6506

How the Infestation Level of Varroa destructor Affects the Distribution Pattern of Multi-Infested Cells in Worker Brood of Apis mellifera

Ignazio Floris, Michelina Pusceddu and Alberto Satta
Veterinary Sciences 7 (3) 136 (2020)
https://doi.org/10.3390/vetsci7030136

Insights into the feeding behaviors and biomechanics of Varroa destructor mites on honey bee pupae using electropenetrography and histology

Andrew Y. Li, Steven C. Cook, Daniel E. Sonenshine, et al.
Journal of Insect Physiology 119 103950 (2019)
https://doi.org/10.1016/j.jinsphys.2019.103950

Controlled Infestation of Honeybee Colonies with Varroa Destructor Females

Rajmund Sokół, Remigiusz Gałęcki and Maria Michalczyk
Journal of Apicultural Science 63 (1) 149 (2019)
https://doi.org/10.2478/jas-2019-0009

Towards integrated control of varroa: 3) mortality proportion from early spring trapping in drone brood

Hasan Al Toufailia, Luciano Scandian and Francis L.W. Ratnieks
Journal of Apicultural Research 57 (3) 433 (2018)
https://doi.org/10.1080/00218839.2018.1454292

Drone brood production in Danish apiaries and its potential for human consumption

Antoine Lecocq, Kirsten Foley and Annette Bruun Jensen
Journal of Apicultural Research 57 (3) 331 (2018)
https://doi.org/10.1080/00218839.2018.1454376

Hygienic removal of freeze-killed brood does not predict Varroa-resistance traits in unselected stocks

Gil Leclercq, Tjeerd Blacquière, Nicolas Gengler and Frédéric Francis
Journal of Apicultural Research 57 (2) 292 (2018)
https://doi.org/10.1080/00218839.2018.1426350

Low fertility, fecundity and numbers of mated female offspring explain the lower reproductive success of the parasitic mite Varroa destructor in African honeybees

Beatrice T. Nganso, Ayuka T. Fombong, Abdullahi A. Yusuf, et al.
Parasitology 145 (12) 1633 (2018)
https://doi.org/10.1017/S0031182018000616

Pyrethroid target site resistance in Greek populations of the honey bee parasite Varroa destructor (Acari: Varroidae)

Eleftherios Alissandrakis, Aris Ilias and Anastasia Tsagkarakou
Journal of Apicultural Research 56 (5) 625 (2017)
https://doi.org/10.1080/00218839.2017.1368822

The impact of hive type on the behavior and health of honey bee colonies (Apis mellifera) in Kenya

Alexander McMenamin, Fiona Mumoki, Maryann Frazier, et al.
Apidologie 48 (5) 703 (2017)
https://doi.org/10.1007/s13592-017-0515-5

Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection

Melissa A.Y. Oddie, Bjørn Dahle and Peter Neumann
PeerJ 5 e3956 (2017)
https://doi.org/10.7717/peerj.3956

Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance

Alexis L. Beaurepaire, Klemens J. Krieger and Robin F.A. Moritz
Infection, Genetics and Evolution 50 49 (2017)
https://doi.org/10.1016/j.meegid.2017.02.011

Impact of the Phoretic Phase on Reproduction and Damage Caused by Varroa destructor (Anderson and Trueman) to Its Host, the European Honey Bee (Apis mellifera L.)

Vincent Piou, Jérémy Tabart, Virginie Urrutia, et al.
PLOS ONE 11 (4) e0153482 (2016)
https://doi.org/10.1371/journal.pone.0153482

A descriptive sensory analysis of honeybee drone brood from Denmark and Norway

J. Evans, A. Müller, A.B. Jensen, et al.
Journal of Insects as Food and Feed 2 (4) 277 (2016)
https://doi.org/10.3920/JIFF2016.0014

Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor

URSULA STRAUSS, VINCENT DIETEMANN, HANNELIE HUMAN, ROBIN M. CREWE and CHRISTIAN W. W. PIRK
Parasitology 143 (3) 374 (2016)
https://doi.org/10.1017/S0031182015001754

A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors

EFSA Supporting Publications 13 (7) (2016)
https://doi.org/10.2903/sp.efsa.2016.EN-1069

Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies

Ninat Buawangpong, Lilia I. de Guzman, Kitiphong Khongphinitbunjong, et al.
Apidologie 46 (6) 779 (2015)
https://doi.org/10.1007/s13592-015-0368-8

Grooming behavior by worker bees of various subspecies of honey bees to remove Varroa destructor mites

Beata Bąk and Jerzy Wilde
Journal of Apicultural Research 54 (3) 207 (2015)
https://doi.org/10.1080/00218839.2016.1147791

Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae

Ryan D. Kuster, Humberto F. Boncristiani and Olav Rueppell
Journal of Experimental Biology 217 (10) 1710 (2014)
https://doi.org/10.1242/jeb.097766

Brood cell size of Apis mellifera modifies the reproductive behavior of Varroa destructor

Matías Maggi, Natalia Damiani, Sergio Ruffinengo, et al.
Experimental and Applied Acarology 50 (3) 269 (2010)
https://doi.org/10.1007/s10493-009-9314-7

Effect of Brood Type on Varroa-Sensitive Hygiene by Worker Honey Bees (Hymenoptera: Apidae)

Jeffrey W Harris
Annals of the Entomological Society of America 101 (6) 1137 (2008)
https://doi.org/10.1603/0013-8746-101.6.1137

Biotechnical methods in colony management, and the use of Apiguard® and Exomite™ Apis for the control of the varroa mite (Varroa destructor) in Irish honey bee (Apis mellifera) colonies

Mary Frances Coffey
Journal of Apicultural Research 46 (4) 213 (2007)
https://doi.org/10.1080/00218839.2007.11101397

The reproductive rate of Varroa destructor in drone brood of Africanized honey bees

R. A. Calderón, L. G. Zamora and J. W. van Veen
Journal of Apicultural Research 46 (3) 140 (2007)
https://doi.org/10.1080/00218839.2007.11101384

The invasive Korea and Japan types of Varroa destructor , ectoparasitic mites of the Western honeybee ( Apis mellifera ), are two partly isolated clones

Michel Solignac, Jean–Marie Cornuet, Dominique Vautrin, et al.
Proceedings of the Royal Society B: Biological Sciences 272 (1561) 411 (2005)
https://doi.org/10.1098/rspb.2004.2853

Components of Honeybee Royal Jelly as Deterrents of the Parasitic Varroa Mite, Varroa destructor

F. P. Drijfhout, J. Kochansky, S. Lin and N. W. Calderone
Journal of Chemical Ecology 31 (8) 1747 (2005)
https://doi.org/10.1007/s10886-005-5925-6

Varroa destructor (Acari: Varroidae) infestation in queen, worker, and drone brood of Apis mellifera (Hymenoptera: Apidae)

M.T. Santillán-Galicia, G. Otero-Colina, C. Romero-Vera and J. Cibrián-Tovar
The Canadian Entomologist 134 (3) 381 (2002)
https://doi.org/10.4039/Ent134381-3

Behavioural responses of Varroa destructor (Acari: Varroidae) to extracts of larvae, cocoons and brood food of worker and drone honey bees, Apis mellifera (Hymenoptera: Apidae)

Nicholas W. Calderone and Sisi Lin
Physiological Entomology 26 (4) 341 (2001)
https://doi.org/10.1046/j.0307-6962.2001.00254.x

Two genetically distinct populations of Varroa jacobsoni with contrasting reproductive abilities on Apis mellifera

Denis L Anderson and Stefan Fuchs
Journal of Apicultural Research 37 (2) 69 (1998)
https://doi.org/10.1080/00218839.1998.11100957

Geometric approximation of the infestation of honey bee brood cells by Varroa jacobsoni and implications for the estimation of brood infestation, for population models and for the proportion of non-sibling matings

S E Reich, S Fuchs, A Schulz and W Urfer
Journal of Apicultural Research 37 (2) 115 (1998)
https://doi.org/10.1080/00218839.1998.11100963

Time-activity budgets and space structuring by the different life stages ofVarroa jacobsoni in capped brood of the honey bee,Apis mellifera

Gérard Donzé and Patrick M. Guerin
Journal of Insect Behavior 10 (3) 371 (1997)
https://doi.org/10.1007/BF02765605

Reproductive success of Varroa jacobsoni in brood of its original host, Apis cerana, in comparison to that of its new host, A. mellifera (Hymenoptera: Apidae)

Willem Jan Boot, Nguyen Quang Tan, Pham Cong Dien, et al.
Bulletin of Entomological Research 87 (2) 119 (1997)
https://doi.org/10.1017/S0007485300027255

Number of reproductive cycles of Varroa jacobsoni in honey-bee (Apis mellifera) colonies

Ingemar Fries and Peter Rosenkranz
Experimental and Applied Acarology 20 (2) 103 (1996)
https://doi.org/10.1007/BF00051156

Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni

GÉRARD DONZÉ, MIRIAM HERRMANN, BORIS BACHOFEN and PAT RICK M. GUERIN
Ecological Entomology 21 (1) 17 (1996)
https://doi.org/10.1111/j.1365-2311.1996.tb00261.x

The presence of inhibitors of the reproduction of Varroa jacobsoni Oud. (Gamasida: Varroidae) in infested cells

Francesco Nazzi and Norberto Milani
Experimental and Applied Acarology 20 (11) 617 (1996)
https://doi.org/10.1007/BF00053325

Why do Varroa mites invade worker brood cells of the honey bee despite lower reproductive success?

Willem J. Boot, Minus van Baalen and Maurice W. Sabelis
Behavioral Ecology and Sociobiology 36 (4) 283 (1995)
https://doi.org/10.1007/BF00165837

Ontogenesis of the mite Varroa jacobsoni Oud. in drone brood of the honeybee Apis mellifera L. under natural conditions

S. J. Martin
Experimental and Applied Acarology 19 (4) 199 (1995)
https://doi.org/10.1007/BF00130823

Behavioral attributes and parental care of Varroa mites parasitizing honeybee brood

Gérard Donzé and Patrick M. Guerin
Behavioral Ecology and Sociobiology 34 (5) 305 (1994)
https://doi.org/10.1007/BF00197001

Behavioral attributes and parental care ofVarroa mites parasitizing honeybee brood

G�rard Donz� and Patrick M. Guerin
Behavioral Ecology and Sociobiology 34 (5) 305 (1994)
https://doi.org/10.1007/BF01209777

Differential periods ofVarroa mite invasion into worker and drone cells of honey bees

Willem J. Boot, Johan N. M. Calis and Joop Beetsma
Experimental and Applied Acarology 16 (4) 295 (1992)
https://doi.org/10.1007/BF01218571