The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Pctra SCHNEIDER , Wilhelm DRESCHER
Apidologie, 18 1 (1987) 101-110
This article has been cited by the following article(s):
58 articles
Relative effectiveness of methods that sample worker honey bees to estimate Varroa destructor populations in Apis mellifera colonies
Michelle A. Taylor, R. Mark Goodwin, Heather M. McBrydie, Harlan M. Cox and Bernard C. Dominiak Apidologie 56 (1) (2025) https://doi.org/10.1007/s13592-024-01143-y
Repercussion of colony conditions on attributes of Apis mellifera L. (Hymenoptera: Apidae) drones
Ojas Chauhan, Priyanka Thakur, Harish Kumar Sharma, Kiran Rana, Neha Negi, Simran Bhatia, Rakesh Kumar and Deeksha Sharma International Journal of Tropical Insect Science (2025) https://doi.org/10.1007/s42690-025-01521-8
Influence of Probiotics Feed Supplementation on Hypopharyngeal Glands Morphometric Measurements of Honeybee Workers Apis mellifera L.
Ashwak Abdel-Moneim Hassan and Yasser Essam Elenany Probiotics and Antimicrobial Proteins 16 (4) 1214 (2024) https://doi.org/10.1007/s12602-023-10107-0
Negative but antagonistic effects of neonicotinoid insecticides and ectoparasitic mites Varroa destructor on Apis mellifera honey bee food glands
Selina Bruckner, Lars Straub, Peter Neumann and Geoffrey R. Williams Chemosphere 313 137535 (2023) https://doi.org/10.1016/j.chemosphere.2022.137535
Ashwak Abdel-Moneim Hassan and Yasser Essam Elenany (2023) https://doi.org/10.21203/rs.3.rs-2406257/v1
Single Nucleotide Polymorphism in the Dopamine Receptor Type 3 (DOP3) Candidate Gene Associated with Varroa Destructor Resistance in Honeybee
Behzad Sepehri, Sadegh Aljani, Arash Javanmard, Hossein Janmohammadi and Karim Hasanpur Research on Animal Production 13 (37) 148 (2022) https://doi.org/10.52547/rap.13.37.148
Variation in the reproductive quality of honey bee males affects their age of flight attempt
Bradley N. Metz and David R. Tarpy PeerJ 10 e13859 (2022) https://doi.org/10.7717/peerj.13859
Feeding probiotics and organic acids to honeybees enhances acinal surface area of their hypopharyngeal glands
Ali Hasan, Javed Iqbal Qazi, Fouzia Tabssum and Ali Hussain Research in Veterinary Science 149 47 (2022) https://doi.org/10.1016/j.rvsc.2022.06.001
Nicolas Vidal‐Naquet and Christopher J. Cripps 439 (2022) https://doi.org/10.1002/9781119569831.ch19
Diseases and Pests of Honey Bees (Apis Mellifera)
Deborah J.M. Pasho, Jeffrey R. Applegate and Don I. Hopkins Veterinary Clinics of North America: Food Animal Practice 37 (3) 401 (2021) https://doi.org/10.1016/j.cvfa.2021.06.001
Potential risks from the accumulation of heavy metals in canola plants
Ahmed Ali Romeh Environmental Science and Pollution Research 28 (37) 52529 (2021) https://doi.org/10.1007/s11356-021-14330-6
To Treat or Not to Treat Bees? Handy VarLoad: A Predictive Model for Varroa destructor Load
Hélène Dechatre, Lucie Michel, Samuel Soubeyrand, Alban Maisonnasse, Pierre Moreau, Yannick Poquet, Maryline Pioz, Cyril Vidau, Benjamin Basso, Fanny Mondet and André Kretzschmar Pathogens 10 (6) 678 (2021) https://doi.org/10.3390/pathogens10060678
Efficacy and temperature dependence of 60% and 85% formic acid treatment against Varroa destructor
Xenia STEUBE, Patricia BEINERT and Wolfgang H. KIRCHNER Apidologie 52 (3) 720 (2021) https://doi.org/10.1007/s13592-021-00859-5
Short-term hyperthermia at larval age reduces sucrose responsiveness of adult honeybees and can increase life span
Arne Kablau, Stefan Berg, Benjamin Rutschmann and Ricarda Scheiner Apidologie 51 (4) 570 (2020) https://doi.org/10.1007/s13592-020-00743-8
Hyperthermia treatment can kill immature and adult Varroa destructor mites without reducing drone fertility
Arne Kablau, Stefan Berg, Stephan Härtel and Ricarda Scheiner Apidologie 51 (3) 307 (2020) https://doi.org/10.1007/s13592-019-00715-7
Beekeeping - New Challenges
Zahra Naeef Ayoub Beekeeping - New Challenges (2020) https://doi.org/10.5772/intechopen.81018
Dominant honeybee colony infestation by Varroa destructor (Acari: Varroidae) K haplotype in Japan
Mari H. Ogihara, Mikio Yoshiyama, Nobuo Morimoto and Kiyoshi Kimura Applied Entomology and Zoology 55 (2) 189 (2020) https://doi.org/10.1007/s13355-020-00667-w
Common and Emerging Infectious Diseases of Honeybees (Apis mellifera)
Jeffrey R. Applegate and Olivia A. Petritz Veterinary Clinics of North America: Exotic Animal Practice 23 (2) 285 (2020) https://doi.org/10.1016/j.cvex.2020.01.001
Biotic Stressors Affecting Key Apiaries in Argentina
Matías Maggi, Silvina Quintana, Pablo D. Revainera, et al. Bee World 97 (2) 45 (2020) https://doi.org/10.1080/0005772X.2019.1699007
Comparison of sublethal effects of natural acaricides carvacrol and thymol on honeybees
Gordana Glavan, Sara Novak, Janko Božič and Anita Jemec Kokalj Pesticide Biochemistry and Physiology 166 104567 (2020) https://doi.org/10.1016/j.pestbp.2020.104567
Honeybee pupal length assessed by CT-scan technique: effects of Varroa infestation, developmental stage and spatial position within the brood comb
Elena Facchini, Laura Nalon, Maria Elena Andreis, Mauro Di Giancamillo, Rita Rizzi and Michele Mortarino Scientific Reports 9 (1) (2019) https://doi.org/10.1038/s41598-019-46474-4
The reduced brood nursing by mite-infested honey bees depends on their accelerated behavioral maturation
V. Zanni, L. Değirmenci, D. Annoscia, R. Scheiner and F. Nazzi Journal of Insect Physiology 109 47 (2018) https://doi.org/10.1016/j.jinsphys.2018.06.006
Honey bees performing varroa sensitive hygiene remove the most mite-compromised bees from highly infested patches of brood
Seo Hyun KIM, Fanny MONDET, Maxime HERVÉ and Alison MERCER Apidologie 49 (3) 335 (2018) https://doi.org/10.1007/s13592-017-0559-6
Early life stress affects mortality rate more than social behavior, gene expression or oxidative damage in honey bee workers
Olav Rueppell, Babak Yousefi, Juan Collazo and Daniel Smith Experimental Gerontology 90 19 (2017) https://doi.org/10.1016/j.exger.2017.01.015
Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony
J. Wegener, H. Ruhnke, K. Scheller, et al. Journal of Insect Physiology 91-92 1 (2016) https://doi.org/10.1016/j.jinsphys.2016.06.004
Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L)
Nadège Forfert, Myrsini E. Natsopoulou, Robert J. Paxton and Robin F.A. Moritz Infection, Genetics and Evolution 44 549 (2016) https://doi.org/10.1016/j.meegid.2016.07.017
Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens
Esmaeil Amiri, Marina D. Meixner and Per Kryger Scientific Reports 6 (1) (2016) https://doi.org/10.1038/srep33065
Honeybee health in Africa—a review
Christian W. W. Pirk, Ursula Strauss, Abdullahi A. Yusuf, Fabien Démares and Hannelie Human Apidologie 47 (3) 276 (2016) https://doi.org/10.1007/s13592-015-0406-6
Natural Varroa mite-surviving Apis mellifera honeybee populations
Barbara Locke Apidologie 47 (3) 467 (2016) https://doi.org/10.1007/s13592-015-0412-8
Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor
URSULA STRAUSS, VINCENT DIETEMANN, HANNELIE HUMAN, ROBIN M. CREWE and CHRISTIAN W. W. PIRK Parasitology 143 (3) 374 (2016) https://doi.org/10.1017/S0031182015001754
The influence of Nosema (Microspora: Nosematidae) infection on honey bee (Hymenoptera: Apidae) defense against Varroa destructor (Mesostigmata: Varroidae)
Rassol Bahreini and Robert W. Currie Journal of Invertebrate Pathology 132 57 (2015) https://doi.org/10.1016/j.jip.2015.07.019
Occurrence of parasites and pathogens in honey bee colonies used in a European genotype-environment interactions experiment
Marina Doris Meixner, Roy Mathew Francis, Anna Gajda, et al. Journal of Apicultural Research 53 (2) 215 (2014) https://doi.org/10.3896/IBRA.1.53.2.04
Mating disruption of the honeybee mite Varroa destructor under laboratory and field conditions
Bettina Ziegelmann and Peter Rosenkranz Chemoecology (2014) https://doi.org/10.1007/s00049-014-0155-4
Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees
C. van Dooremalen, E. Stam, L. Gerritsen, et al. Journal of Insect Physiology (2013) https://doi.org/10.1016/j.jinsphys.2013.02.006
Proteolysis on the body surface of pyrethroid-sensitive and resistant Varroa destructor
Aneta Strachecka, Grzegorz Borsuk, Krzysztof Olszewski, Jerzy Paleolog and Zbigniew Lipiński Acta Parasitologica 58 (1) 64 (2013) https://doi.org/10.2478/s11686-013-0109-y
Asiatic Honeybee Apis cerana
Dharam P. Abrol Asiatic Honeybee Apis cerana 855 (2013) https://doi.org/10.1007/978-94-007-6928-1_20
Development of a 44K SNP assay focussing on the analysis of a varroa‐specific defence behaviour in honey bees (Apis mellifera carnica)
A. SPÖTTER, P. GUPTA, G. NÜRNBERG, N. REINSCH and K. BIENEFELD Molecular Ecology Resources 12 (2) 323 (2012) https://doi.org/10.1111/j.1755-0998.2011.03106.x
The mating behavior of Varroa destructor is triggered by a female sex pheromone
Bettina Ziegelmann, Anne Lindenmayer, Johannes Steidle and Peter Rosenkranz Apidologie (2012) https://doi.org/10.1007/s13592-012-0182-5
The effects of beta acids from hops (Humulus lupulus) on mortality of Varroa destructor (Acari: Varroidae)
Gloria DeGrandi-Hoffman, Fabiana Ahumada, Gene Probasco and Lloyd Schantz Experimental and Applied Acarology 58 (4) 407 (2012) https://doi.org/10.1007/s10493-012-9593-2
10.1007/BF00221366
CrossRef Listing of Deleted DOIs (2011) https://doi.org/10.1007/BF00221366
Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees
Cédric Alaux, Christelle Dantec, Hughes Parrinello and Yves Le Conte BMC Genomics 12 (1) 496 (2011) https://doi.org/10.1186/1471-2164-12-496
Nosemasp. influences flight behavior of infected honey bee (Apis mellifera) foragers
Jasna Kralj and Stefan Fuchs Apidologie 41 (1) 21 (2010) https://doi.org/10.1051/apido/2009046
Practical Sampling Plans forVarroa destructor(Acari: Varroidae) inApis mellifera(Hymenoptera: Apidae) Colonies and Apiaries
K. V. Lee, R. D. Moon, E. C. Burkness, W. D. Hutchison and M. Spivak Journal of Economic Entomology 103 (4) 1039 (2010) https://doi.org/10.1603/EC10037
Breeding for resistance toVarroa destructorin Europe
Ralph Büchler, Stefan Berg and Yves Le Conte Apidologie 41 (3) 393 (2010) https://doi.org/10.1051/apido/2010011
Biology and control of Varroa destructor
Peter Rosenkranz, Pia Aumeier and Bettina Ziegelmann Journal of Invertebrate Pathology 103 S96 (2010) https://doi.org/10.1016/j.jip.2009.07.016
Varroamites and honey bee health: canVarroaexplain part of the colony losses?
Yves Le Conte, Marion Ellis and Wolfgang Ritter Apidologie 41 (3) 353 (2010) https://doi.org/10.1051/apido/2010017
Shorter-lived workers start foraging earlier
A. Tofilski Insectes Sociaux 56 (4) 359 (2009) https://doi.org/10.1007/s00040-009-0031-3
Timing acaricide treatments to prevent Varroa destructor (Acari: Varroidae) from causing economic damage to honey bee colonies
R. W. Currie and P. Gatien The Canadian Entomologist 138 (2) 238 (2006) https://doi.org/10.4039/n05-024
ParasiticVarroa destructormites influence flight duration and homing ability of infestedApis melliferaforagers
Jasna Kralj and Stefan Fuchs Apidologie 37 (5) 577 (2006) https://doi.org/10.1051/apido:2006040
The Nature of Biological Systems as Revealed by Thermal Methods
E. Schmolz and I. Lamprecht Hot Topics in Thermal Analysis and Calorimetry, The Nature of Biological Systems as Revealed by Thermal Methods 5 251 (2005) https://doi.org/10.1007/1-4020-2219-0_10
Altered Physiology in Worker Honey Bees (Hymenoptera: Apidae) Infested with the Mite Varroa destructor (Acari: Varroidae): A Factor in Colony Loss During Overwintering?
Gro V. Amdam, Klaus Hartfelder, Kari Norberg, Arne Hagen and Stig W. Omholt Journal of Economic Entomology 97 (3) 741 (2004) https://doi.org/10.1603/0022-0493(2004)097[0741:APIWHB]2.0.CO;2
Timing of acaracide treatments for control of low-level populations of Varroa destructor (Acari: Varroidae) and implications for colony performance of honey bees
P. Gatien and R.W. Currie The Canadian Entomologist 135 (5) 749 (2003) https://doi.org/10.4039/n02-086
The Regulatory Anatomy of Honeybee Lifespan
GRO VANG AMDAM and STIG W. OMHOLT Journal of Theoretical Biology 216 (2) 209 (2002) https://doi.org/10.1006/jtbi.2002.2545
The Varroa mite, a Devastating Parasite of Western Honeybees and an Economic Threat to Beekeeping
Joop Beetsma Outlook on Agriculture 23 (3) 169 (1994) https://doi.org/10.1177/003072709402300303
Phoretic bee mites and honeybee grooming behavior
M. Delfinado-Baker, W. Rath and O. Boecking International Journal of Acarology 18 (4) 315 (1992) https://doi.org/10.1080/01647959208683966
Palmitic acid released from honeybee worker larvae attracts the parasitic miteVarroa jacobsoni on a servosphere
M. Rickli, P. M. Guerin and P. A. Diehl Naturwissenschaften 79 (7) 320 (1992) https://doi.org/10.1007/BF01138711
The role of trophallaxis in the distribution of Perizin in a honeybee colony with regard to the control of the Varroa mite
N. W. M. van Buren, A. G. H. Mariën and H. H. W. Velthuis Entomologia Experimentalis et Applicata 65 (2) 157 (1992) https://doi.org/10.1111/j.1570-7458.1992.tb01639.x
Preface
J. Beetsma Experimental and Applied Acarology 16 (4) iv (1992) https://doi.org/10.1007/BF01218568