Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Michelina PUSCEDDU, Simon Tragust, Panagiotis Theodorou, Irene Ciabattini Bolla, Jorge Sanchez Navarro, Francesco Corrias, Alessandro Atzei, Alberto Angioni, Ignazio Floris and Alberto Satta
(2025)
https://doi.org/10.21203/rs.3.rs-6238801/v1

Heightened sensitivity in high-grooming honey bees (Hymenoptera: Apidae)

Derek Micholson, Robert W Currie and Juliana Rangel
Journal of Insect Science 24 (3) (2024)
https://doi.org/10.1093/jisesa/ieae057

Comparison of Brain Gene Expression Profiles Associated with Auto-Grooming Behavior between Apis cerana and Apis mellifera Infested by Varroa destructor

Jiali Liao, Kunlin Wan, Yang Lü, Wenyao Ouyang, Jingnan Huang, Liyuan Zheng, Liuchang Miao, Songkun Su and Zhiguo Li
Genes 15 (6) 763 (2024)
https://doi.org/10.3390/genes15060763

The tracheal immune system of insects - A blueprint for understanding epithelial immunity

Judith Bossen, Jan-Philip Kühle and Thomas Roeder
Insect Biochemistry and Molecular Biology 157 103960 (2023)
https://doi.org/10.1016/j.ibmb.2023.103960

The survival consequences of grooming in the honey bee Apis mellifera

A. M. Foose, R. R. Westwick, M. Vengarai and C. C. Rittschof
Insectes Sociaux 69 (2-3) 279 (2022)
https://doi.org/10.1007/s00040-022-00868-2

First insights into the honey bee (Apis mellifera) brain lipidome and its neonicotinoid-induced alterations associated with reduced self-grooming behavior

Nuria Morfin, Tiffany A. Fillier, Thu Huong Pham, Paul H. Goodwin, Raymond H. Thomas and Ernesto Guzman-Novoa
Journal of Advanced Research 37 75 (2022)
https://doi.org/10.1016/j.jare.2021.08.007

Honey bee behaviours within the hive: Insights from long-term video analysis

Paul Siefert, Nastasya Buling, Bernd Grünewald and Olav Rueppell
PLOS ONE 16 (3) e0247323 (2021)
https://doi.org/10.1371/journal.pone.0247323

Differences in grooming behavior between susceptible and resistant honey bee colonies after 13 years of natural selection

Nedjma Dadoun, Mohamed Nait-Mouloud, Arezki Mohammedi and Ourdia Sadeddine Zennouche
Apidologie 51 (5) 793 (2020)
https://doi.org/10.1007/s13592-020-00761-6

Differential autogrooming response to the tracheal mite Acarapis woodi by the honey bees Apis cerana and Apis mellifera

Y. Sakamoto, T. Maeda, M. Yoshiyama, F. Konno and J. S. Pettis
Insectes Sociaux 67 (1) 95 (2020)
https://doi.org/10.1007/s00040-019-00732-w

Increased immunocompetence and network centrality of allogroomer workers suggest a link between individual and social immunity in honeybees

Alessandro Cini, Adele Bordoni, Federico Cappa, Iacopo Petrocelli, Martina Pitzalis, Immacolata Iovinella, Francesca Romana Dani, Stefano Turillazzi and Rita Cervo
Scientific Reports 10 (1) (2020)
https://doi.org/10.1038/s41598-020-65780-w

Seasonal variation in the prevalence of Varroa, Nosema and Acarapis in hives from which queen bee mating nuclei are produced

Henry Loeza-Concha, Socorro Salgado-Moreno, Fidel Avila-Ramos, et al.
Journal of Apicultural Research 59 (4) 558 (2020)
https://doi.org/10.1080/00218839.2020.1717060

Resin foraging dynamics in Varroa destructor‐infested hives: a case of medication of kin?

Michelina Pusceddu, Giannella Piluzza, Panagiotis Theodorou, Franco Buffa, Luca Ruiu, Simonetta Bullitta, Ignazio Floris and Alberto Satta
Insect Science 26 (2) 297 (2019)
https://doi.org/10.1111/1744-7917.12515

Differential Gene Expression Associated with Honey Bee Grooming Behavior in Response to Varroa Mites

Mollah Md. Hamiduzzaman, Berna Emsen, Greg J. Hunt, et al.
Behavior Genetics 47 (3) 335 (2017)
https://doi.org/10.1007/s10519-017-9834-6

Differential susceptibility to the tracheal mite Acarapis woodi between Apis cerana and Apis mellifera

Yoshiko Sakamoto, Taro Maeda, Mikio Yoshiyama and Jeffery S. Pettis
Apidologie 48 (2) 150 (2017)
https://doi.org/10.1007/s13592-016-0460-8

Longevity, trophallaxis, and allogrooming in Macrotermes gilvus soldiers infected by the parasitoid fly Misotermes mindeni

Foong‐Kuan Foo, Ahmad Sofiman Othman and Chow‐Yang Lee
Entomologia Experimentalis et Applicata 155 (2) 154 (2015)
https://doi.org/10.1111/eea.12296

Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.)

Ernesto Guzman-Novoa, Berna Emsen, Peter Unger, Laura G. Espinosa-Montaño and Tatiana Petukhova
Journal of Invertebrate Pathology 110 (3) 314 (2012)
https://doi.org/10.1016/j.jip.2012.03.020

Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera)

Brendon L. Fussnecker, Brian H. Smith and Julie A. Mustard
Journal of Insect Physiology 52 (10) 1083 (2006)
https://doi.org/10.1016/j.jinsphys.2006.07.008

Caste, Sex and Strain of Honey Bees (Apis mellifera) Affect Infestation with Tracheal Mites (Acarapis woodi)*

José D. Villa and Robert G. Danka
Experimental and Applied Acarology 37 (3-4) 157 (2005)
https://doi.org/10.1007/s10493-005-2647-y

Resistance toAcarapis woodiby Honey Bees (Hymenoptera: Apidae): Divergent Selection and Evaluation of Selection Progress

Medhat E. Nasr, Gard W. Otis and Cynthia D. Scott-Dupree
Journal of Economic Entomology 94 (2) 332 (2001)
https://doi.org/10.1603/0022-0493-94.2.332

The Role of Cuticular Compounds in the Resistance of Honey Bees (Apis Mellifera) to Tracheal Mites (Acarapis Woodi)

Dennis van Engelsdorp and Gard W. Otis
Experimental & Applied Acarology 25 (7) 593 (2001)
https://doi.org/10.1023/A:1014775827234