Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera

Hannah Hesselbach, Johannes Seeger, Felix Schilcher, Markus Ankenbrand, Ricarda Scheiner and Jacqueline Beggs
Journal of Applied Ecology 57 (3) 609 (2020)
https://doi.org/10.1111/1365-2664.13555

Modification of the head proteome of nurse honeybees (Apis mellifera) exposed to field-relevant doses of pesticides

Rodrigo Zaluski, Alis Correia Bittarello, José Cavalcante Souza Vieira, Camila Pereira Braga, Pedro de Magalhaes Padilha, Mileni da Silva Fernandes, Thaís de Souza Bovi and Ricardo de Oliveira Orsi
Scientific Reports 10 (1) (2020)
https://doi.org/10.1038/s41598-020-59070-8

Potential Impacts of Translocation of Neonicotinoid Insecticides to Cotton (Gossypium hirsutum (Malvales: Malvaceae)) Extrafloral Nectar on Parasitoids

Gary W Felton, John F Tooker, Kirsten Pearsons, et al.
Environmental Entomology 49 (1) 159 (2020)
https://doi.org/10.1093/ee/nvz157

Monitoring the Field-Realistic Exposure of Honeybee Colonies to Neonicotinoids by An Integrative Approach: A Case Study in Romania

Eliza Căuia, Adrian Siceanu, Gabriela Oana Vișan, Dumitru Căuia, Teodora Colța and Roxana Antoaneta Spulber
Diversity 12 (1) 24 (2020)
https://doi.org/10.3390/d12010024

Evaluation of the expression stability of reference genes in Apis mellifera under pyrethroid treatment

Przemysław Wieczorek, Patryk Frąckowiak and Aleksandra Obrępalska-Stęplowska
Scientific Reports 10 (1) (2020)
https://doi.org/10.1038/s41598-020-73125-w

Oral or Topical Exposure to Glyphosate in Herbicide Formulation Impacts the Gut Microbiota and Survival Rates of Honey Bees

Erick V. S. Motta, Myra Mak, Tyler K. De Jong, J. Elijah Powell, Angela O'Donnell, Kristin J. Suhr, Ian M. Riddington, Nancy A. Moran and Eric V. Stabb
Applied and Environmental Microbiology 86 (18) (2020)
https://doi.org/10.1128/AEM.01150-20

Determination and uptake of abamectin and difenoconazole in the stingless bee Melipona scutellaris Latreille, 1811 via oral and topic acute exposure

Fernanda Scavassa Ribeiro do Prado, Dayana Moscardi dos Santos, Thiessa Maramaldo de Almeida Oliveira, José Augusto Micheletti Burgarelli, Janete Brigante Castele and Eny Maria Vieira
Environmental Pollution 265 114313 (2020)
https://doi.org/10.1016/j.envpol.2020.114313

Distribution of chemical residues in the beehive compartments and their transfer to the honeybee brood

María Murcia Morales, María José Gómez Ramos, Piedad Parrilla Vázquez, Francisco José Díaz Galiano, Mar García Valverde, Victoria Gámiz López, José Manuel Flores and Amadeo R. Fernández-Alba
Science of The Total Environment 710 136288 (2020)
https://doi.org/10.1016/j.scitotenv.2019.136288

The effect of diet on Apis mellifera larval susceptibility to Paenibacillus larvae

María de la Paz Moliné, Natalia J. Fernández, Natalia Damiani, M. Sandra Churio and Liesel B. Gende
Journal of Apicultural Research 59 (5) 817 (2020)
https://doi.org/10.1080/00218839.2020.1727086

Pesticide Residues in Honey from Stingless Bee Melipona Subnitida (Meliponini, Apidae)

Carolina de Gouveia M. D. E. Pinheiro, Fabiano Aurélio D. S. Oliveira, Silvia Catarina S. Oloris, Jean Berg A. da Silva and Benito Soto-Blanco
Journal of Apicultural Science 64 (1) 29 (2020)
https://doi.org/10.2478/jas-2020-0010

APIStrip, a new tool for environmental contaminant sampling through honeybee colonies

María Murcia-Morales, Jozef J.M. Van der Steen, Flemming Vejsnæs, Francisco José Díaz-Galiano, José Manuel Flores and Amadeo R. Fernández-Alba
Science of The Total Environment 729 138948 (2020)
https://doi.org/10.1016/j.scitotenv.2020.138948

Honeybees fail to discriminate floral scents in a complex learning task after consuming a neonicotinoid pesticide

Julie A. Mustard, Annie Gott, Jennifer Scott, Nancy L. Chavarria and Geraldine A. Wright
Journal of Experimental Biology 223 (5) jeb217174 (2020)
https://doi.org/10.1242/jeb.217174

Plant protection product residues in plant pollen and nectar: A review of current knowledge

Elena Zioga, Ruth Kelly, Blánaid White and Jane C. Stout
Environmental Research 189 109873 (2020)
https://doi.org/10.1016/j.envres.2020.109873

Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium

Dimitry Wintermantel, Jean-François Odoux, Axel Decourtye, et al.
Science of The Total Environment 704 135400 (2020)
https://doi.org/10.1016/j.scitotenv.2019.135400

Bingöl İlinde Yaşanan Koloni Kayıpları (Arı Ölümleri), Nedenleri ve Öneriler

Mehmet Ali KUTLU
Türk Tarım ve Doğa Bilimleri Dergisi 7 (4) 867 (2020)
https://doi.org/10.30910/turkjans.685088

Sulfoxaflor Residues in Pollen and Nectar of Cotton Applied through Drip Irrigation and Their Potential Exposure to Apis mellifera L.

Hui Jiang, Jianjun Chen, Chen Zhao, Yongqing Tian, Zhixiang Zhang and Hanhong Xu
Insects 11 (2) 114 (2020)
https://doi.org/10.3390/insects11020114

Honey Bees and Neonicotinoid-Treated Corn Seed: Contamination, Exposure, and Effects

Chia-Hua Lin, Douglas B. Sponsler, Rodney T. Richardson, Harold D. Watters, Donna A. Glinski, W. Matthew Henderson, Jeffrey M. Minucci, E. Henry Lee, S. Thomas Purucker and Reed M. Johnson
Environmental Toxicology and Chemistry 40 (4) 1212 (2020)
https://doi.org/10.1002/etc.4957

Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees

Noëmie El Agrebi, Kirsten Traynor, Olivier Wilmart, et al.
Science of The Total Environment 745 141036 (2020)
https://doi.org/10.1016/j.scitotenv.2020.141036

Floral resources provided by the new energy crop, Silphium perfoliatum L. (Asteraceae)

Anna Lena Mueller, Andrea Biertümpfel, Lennart Friedritz, et al.
Journal of Apicultural Research 59 (2) 232 (2020)
https://doi.org/10.1080/00218839.2019.1668140

Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambda-cyhalothrin

Mayara Badaró Arthidoro de Castro, Luis Carlos Martinez, Jamile Fernanda Silva Cossolin, Raissa Santana Serra and José Eduardo Serrão
Chemosphere 248 126075 (2020)
https://doi.org/10.1016/j.chemosphere.2020.126075

Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?

C. Scott Clem, Taylor M. Sparbanie, Alec B. Luro, Alexandra N. Harmon-Threatt and Wolfgang Blenau
PLOS ONE 15 (6) e0234820 (2020)
https://doi.org/10.1371/journal.pone.0234820

Comprehensive Survey of Area-Wide Agricultural Pesticide Use in Southern United States Row Crops and Potential Impact on Honey Bee Colonies

Jon Zawislak, John Adamczyk, Donald R. Johnson, Gus Lorenz, Joe Black, Quinton Hornsby, Scott D. Stewart and Neelendra Joshi
Insects 10 (9) 280 (2019)
https://doi.org/10.3390/insects10090280

Botanical Origin of Pesticide Residues in Pollen Loads Collected by Honeybees During and After Apple Bloom

Riccardo Favaro, Lisbeth Marie Bauer, Michele Rossi, et al.
Frontiers in Physiology 10 (2019)
https://doi.org/10.3389/fphys.2019.01069

Alterations in honey bee gut microorganisms caused by Nosema spp. and pest control methods

Tsiri Diaz, Ek del‐Val, Ricardo Ayala and John Larsen
Pest Management Science 75 (3) 835 (2019)
https://doi.org/10.1002/ps.5188

Bruceine D Isolated from Brucea Javanica (L.) Merr. as a Systemic Feeding Deterrent for Three Major Lepidopteran Pests

Genlin Mao, Yongqing Tian, Zheng Sun, Jianlin Ou and Hanhong Xu
Journal of Agricultural and Food Chemistry 67 (15) 4232 (2019)
https://doi.org/10.1021/acs.jafc.8b06511

Measurement of protein and sugar consumed by bumblebee larvae under standard and food stress conditions using lanthanide complexes

L. Macháčková, A. Votavová, M. Mikát, et al.
Insectes Sociaux 66 (2) 245 (2019)
https://doi.org/10.1007/s00040-018-00681-w

Tracking Pesticide Residues to a Plant Genus Using Palynology in Pollen Trapped from Honey Bees (Hymenoptera: Apidae) at Ornamental Plant Nurseries

Kimberly A Stoner, Richard S Cowles, Andrea Nurse and Brian D Eitzer
Environmental Entomology 48 (2) 351 (2019)
https://doi.org/10.1093/ee/nvz007

Effect of Sub-lethal Doses of Imidacloprid on Learning and Memory Formation of Indigenous Arabian Bee (Apis mellifera jemenitica Ruttner) Adult Foragers

J Iqbal, A S Alqarni and H S A Raweh
Neotropical Entomology 48 (3) 373 (2019)
https://doi.org/10.1007/s13744-018-0651-2

Pesticide Exposure Assessment Paradigm for Solitary Bees

Fabio Sgolastra, Silvia Hinarejos, Theresa L Pitts-Singer, et al.
Environmental Entomology 48 (1) 22 (2019)
https://doi.org/10.1093/ee/nvy105

Workshop on Pesticide Exposure Assessment Paradigm for Non-Apis Bees: Foundation and Summaries

Natalie K Boyle, Theresa L Pitts-Singer, John Abbott, et al.
Environmental Entomology 48 (1) 4 (2019)
https://doi.org/10.1093/ee/nvy103

Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera: Apidae): Implications for Risk Assessments

Angela E Gradish, Jozef van der Steen, Cynthia D Scott-Dupree, et al.
Environmental Entomology 48 (1) 12 (2019)
https://doi.org/10.1093/ee/nvy168

Non-Apis Bee Exposure Workshop: Industry Participants’ View

Silvia Hinarejos, John Abbott, Anne Alix, et al.
Environmental Entomology 48 (1) 49 (2019)
https://doi.org/10.1093/ee/nvy138

Spinosad-mediated effects in the post-embryonic development of Partamona helleri (Hymenoptera: Apidae: Meliponini)

Renan dos Santos Araujo, Rodrigo Cupertino Bernardes, Kenner Morais Fernandes, et al.
Environmental Pollution 253 11 (2019)
https://doi.org/10.1016/j.envpol.2019.06.087

Thiamethoxam: Long-term effects following honey bee colony-level exposure and implications for risk assessment

Helen Thompson, Jay Overmyer, Max Feken, et al.
Science of The Total Environment 654 60 (2019)
https://doi.org/10.1016/j.scitotenv.2018.11.003

Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation

Linda Tong, James C. Nieh and Simone Tosi
Chemosphere 237 124408 (2019)
https://doi.org/10.1016/j.chemosphere.2019.124408

The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera)

Michelle A. Taylor, Alastair W. Robertson, Patrick J. Biggs, et al.
PLOS ONE 14 (12) e0225845 (2019)
https://doi.org/10.1371/journal.pone.0225845

Assessment of risk to hoary squash bees (Peponapis pruinosa) and other ground-nesting bees from systemic insecticides in agricultural soil

D. Susan Willis Chan, Ryan S. Prosser, Jose L. Rodríguez-Gil and Nigel E. Raine
Scientific Reports 9 (1) (2019)
https://doi.org/10.1038/s41598-019-47805-1

Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to Apis mellifera L. larvae reared in vitro

Pingli Dai, Cameron J Jack, Ashley N Mortensen, Tomas A Bustamante, Jeffrey R Bloomquist and James D Ellis
Pest Management Science 75 (1) 29 (2019)
https://doi.org/10.1002/ps.5124

Chronic exposure of bumblebees to neonicotinoid imidacloprid suppresses the entire mevalonate pathway and fatty acid synthesis

Tomas Erban, Bruno Sopko, Pavel Talacko, Karel Harant, Klara Kadlikova, Tatana Halesova, Katerina Riddellova and Apostolos Pekas
Journal of Proteomics 196 69 (2019)
https://doi.org/10.1016/j.jprot.2018.12.022

Caste‐ and pesticide‐specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees

Thomas J. Colgan, Isabel K. Fletcher, Andres N. Arce, Richard J. Gill, Ana Ramos Rodrigues, Eckart Stolle, Lars Chittka and Yannick Wurm
Molecular Ecology 28 (8) 1964 (2019)
https://doi.org/10.1111/mec.15047

Unique features of flight muscles mitochondria of honey bees (Apis mellifera L.)

Mikhail Y. Syromyatnikov, Artem P. Gureev, Inna Y. Vitkalova, Anatoly A. Starkov and Vasily N. Popov
Archives of Insect Biochemistry and Physiology 102 (1) (2019)
https://doi.org/10.1002/arch.21595

Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine

Kamila Vilas Boas Balieira, Meiriele Mazzo, Paulo Francisco Veiga Bizerra, et al.
Apidologie 49 (5) 562 (2018)
https://doi.org/10.1007/s13592-018-0583-1

Sensitivity analyses for simulating pesticide impacts on honey bee colonies

A. Carmen Kuan, Gloria DeGrandi-Hoffman, Robert J. Curry, Kristina V. Garber, Andrew R. Kanarek, Marcia N. Snyder, Kurt L. Wolfe and S. Thomas Purucker
Ecological Modelling 376 15 (2018)
https://doi.org/10.1016/j.ecolmodel.2018.02.010

Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation

Judy Wu-Smart and Marla Spivak
Environmental Entomology 47 (1) 55 (2018)
https://doi.org/10.1093/ee/nvx175

A rapid colorimetric method for the detection of deltamethrin based on gold nanoparticles modified with 2-mercapto-6-nitrobenzothiazole

Zhuqing Wang, Yunlong Huang, Dejin Wang, et al.
Analytical Methods 10 (15) 1774 (2018)
https://doi.org/10.1039/C8AY00137E

Lethal and sublethal effects of insecticides on Engytatus varians (Heteroptera: Miridae), a predator of Tuta absoluta (Lepidoptera: Gelechiidae)

Daniel Alberto Pérez-Aguilar, Marianne Araújo Soares, Luis Clepf Passos, et al.
Ecotoxicology 27 (6) 719 (2018)
https://doi.org/10.1007/s10646-018-1954-0

Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L.)

Jiangong Jiang, Dicheng Ma, Nan Zou, et al.
Chemosphere 201 159 (2018)
https://doi.org/10.1016/j.chemosphere.2018.02.168

Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany

Franziska Böhme, Gabriela Bischoff, Claus P. W. Zebitz, et al.
PLOS ONE 13 (7) e0199995 (2018)
https://doi.org/10.1371/journal.pone.0199995

Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure

Andres N. Arce, Ana Ramos Rodrigues, Jiajun Yu, et al.
Proceedings of the Royal Society B: Biological Sciences 285 (1885) 20180655 (2018)
https://doi.org/10.1098/rspb.2018.0655

Vine and citrus mealybug pest control based on synthetic chemicals. A review

Ramzi Mansour, Luc P. Belzunces, Pompeo Suma, et al.
Agronomy for Sustainable Development 38 (4) (2018)
https://doi.org/10.1007/s13593-018-0513-7

Flower strip networks offer promising long term effects on pollinator species richness in intensively cultivated agricultural areas

Constanze Buhk, Rainer Oppermann, Arno Schanowski, et al.
BMC Ecology 18 (1) (2018)
https://doi.org/10.1186/s12898-018-0210-z

Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure

Pau Calatayud-Vernich, Fernando Calatayud, Enrique Simó and Yolanda Picó
Environmental Pollution 241 106 (2018)
https://doi.org/10.1016/j.envpol.2018.05.062

Single and interactive effects of Varroa destructor, Nosema spp., and imidacloprid on honey bee colonies (Apis mellifera)

Coby van Dooremalen, Bram Cornelissen, Chula Poleij‐Hok‐Ahin and Tjeerd Blacquière
Ecosphere 9 (8) (2018)
https://doi.org/10.1002/ecs2.2378

Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments

Ales Gregorc, Mohamed Alburaki, Nicholas Rinderer, Blair Sampson, Patricia R. Knight, Shahid Karim and John Adamczyk
Scientific Reports 8 (1) (2018)
https://doi.org/10.1038/s41598-018-33348-4

Chemical residues in beebread, honey, pollen and wax samples collected from bee hives placed on canola crops in Western Australia

Rob Manning
Journal of Apicultural Research 57 (5) 696 (2018)
https://doi.org/10.1080/00218839.2018.1494889

Occurrence of agrochemical residues in beeswax samples collected in Italy during 2013–2015

Monia Perugini, Serena M.R. Tulini, Daniela Zezza, et al.
Science of The Total Environment 625 470 (2018)
https://doi.org/10.1016/j.scitotenv.2017.12.321

Ecotoxicological effects of the insecticide fipronil in Brazilian native stingless bees Melipona scutellaris (Apidae: Meliponini)

Cássio Resende de Morais, Bruno Augusto Nassif Travençolo, Stephan Malfitano Carvalho, Marcelo Emílio Beletti, Vanessa Santana Vieira Santos, Carlos Fernando Campos, Edimar Olegário de Campos Júnior, Boscolli Barbosa Pereira, Maria Paula Carvalho Naves, Alexandre Azenha Alves de Rezende, Mário Antônio Spanó, Carlos Ueira Vieira and Ana Maria Bonetti
Chemosphere 206 632 (2018)
https://doi.org/10.1016/j.chemosphere.2018.04.153

Interactions between pesticides and pathogen susceptibility in honey bees

Scott T O’Neal, Troy D Anderson and Judy Y Wu-Smart
Current Opinion in Insect Science 26 57 (2018)
https://doi.org/10.1016/j.cois.2018.01.006

Neonicotinoid insecticides in pollen, honey and adult bees in colonies of the European honey bee (Apis mellifera L.) in Egypt

Garry Codling, Yahya Al Naggar, John P. Giesy and Albert J. Robertson
Ecotoxicology 27 (2) 122 (2018)
https://doi.org/10.1007/s10646-017-1876-2

Evaluation of Highly Detectable Pesticides Sprayed in Brassica napus L.: Degradation Behavior and Risk Assessment for Honeybees

Zhou Tong, Jinsheng Duan, Yancan Wu, Qiongqiong Liu, Qibao He, Yanhong Shi, Linsheng Yu and Haiqun Cao
Molecules 23 (10) 2482 (2018)
https://doi.org/10.3390/molecules23102482

Thiamethoxam honey bee colony feeding study: Linking effects at the level of the individual to those at the colony level

Jay Overmyer, Max Feken, Natalie Ruddle, Sigrun Bocksch, Marcus Hill and Helen Thompson
Environmental Toxicology and Chemistry 37 (3) 816 (2018)
https://doi.org/10.1002/etc.4018

Agricultural pesticide residues in honey and wax combs from Southeastern, Central and Northeastern Mexico

Cesar Valdovinos-Flores, Víctor M Alcantar-Rosales, Octavio Gaspar-Ramírez, Luz M Saldaña-Loza and José A Dorantes-Ugalde
Journal of Apicultural Research 56 (5) 667 (2017)
https://doi.org/10.1080/00218839.2017.1340798

Synergistic mortality between a neonicotinoid insecticide and an ergosterol‐biosynthesis‐inhibiting fungicide in three bee species

Fabio Sgolastra, Piotr Medrzycki, Laura Bortolotti, Maria Teresa Renzi, Simone Tosi, Gherardo Bogo, Dariusz Teper, Claudio Porrini, Roberto Molowny‐Horas and Jordi Bosch
Pest Management Science 73 (6) 1236 (2017)
https://doi.org/10.1002/ps.4449

Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

Matthew Betti, Josh LeClair, Lindi Wahl and Mair Zamir
Insects 8 (1) 31 (2017)
https://doi.org/10.3390/insects8010031

Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?

Priscila Sepúlveda Friol, Aline Fernanda Catae, Daiana Antonia Tavares, Osmar Malaspina and Thaisa Cristina Roat
Chemosphere 185 56 (2017)
https://doi.org/10.1016/j.chemosphere.2017.06.113

A demographic approach to evaluating the impact of stressors on bumble bee colonies

JAMES E. CRESSWELL
Ecological Entomology 42 (2) 221 (2017)
https://doi.org/10.1111/een.12376

Transfer and Metabolism of Triadimefon Residues from Rape Flowers to Apicultural Products

Ying-Hong Li, Bei-Lei Zhou, Ming-Rong Qian, Qiang Wang and Hu Zhang
Journal of Analytical Methods in Chemistry 2017 1 (2017)
https://doi.org/10.1155/2017/7697345

Modeling Effects of Honeybee Behaviors on the Distribution of Pesticide in Nectar within a Hive and Resultant in-Hive Exposure

Jack C. O. Rumkee, Matthias A. Becher, Pernille Thorbek and Juliet L. Osborne
Environmental Science & Technology 51 (12) 6908 (2017)
https://doi.org/10.1021/acs.est.6b04206

Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.)

Mikhail Y. Syromyatnikov, Anastasia V. Kokina, Alexey V. Lopatin, Anatoly A. Starkov and Vasily N. Popov
Pesticide Biochemistry and Physiology 135 41 (2017)
https://doi.org/10.1016/j.pestbp.2016.06.007

Three years of banning neonicotinoid insecticides based on sub-lethal effects: can we expect to see effects on bees?

Tjeerd Blacquière and Jozef JM van der Steen
Pest Management Science 73 (7) 1299 (2017)
https://doi.org/10.1002/ps.4583

A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus

Vardayani Ratti, Peter G. Kevan and Hermann J. Eberl
Bulletin of Mathematical Biology 79 (6) 1218 (2017)
https://doi.org/10.1007/s11538-017-0281-6

A method for the objective selection of landscape‐scale study regions and sites at the national level

Mark A. K. Gillespie, Mathilde Baude, Jacobus Biesmeijer, Nigel Boatman, Giles E. Budge, Andrew Crowe, Jane Memmott, R. Daniel Morton, Stephane Pietravalle, Simon G. Potts, Deepa Senapathi, Simon M. Smart, William E. Kunin and Justin Travis
Methods in Ecology and Evolution 8 (11) 1468 (2017)
https://doi.org/10.1111/2041-210X.12779

The exposure of honey bees ( Apis mellifera ; Hymenoptera: Apidae) to pesticides: Room for improvement in research

Johanna Benuszak, Marion Laurent and Marie-Pierre Chauzat
Science of The Total Environment 587-588 423 (2017)
https://doi.org/10.1016/j.scitotenv.2017.02.062

Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera

Eva Vianey Alquisira-Ramírez, Guadalupe Peña-Chora, Víctor Manuel Hernández-Velázquez, et al.
Ecotoxicology and Environmental Safety 142 69 (2017)
https://doi.org/10.1016/j.ecoenv.2017.03.050

Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages

Daiana Antonia Tavares, Claudia Dussaubat, André Kretzschmar, Stephan Malfitano Carvalho, Elaine C.M. Silva-Zacarin, Osmar Malaspina, Géraldine Bérail, Jean-Luc Brunet and Luc P. Belzunces
Environmental Pollution 229 386 (2017)
https://doi.org/10.1016/j.envpol.2017.05.092

Transfer Assessment of Carbendazim Residues from Rape Flowers to Apicultural Products

Ying-Hong Li, Bei-Lei Zhou, Ming-Rong Qian, Qiang Wang and Hu Zhang
Journal of Analytical Methods in Chemistry 2017 1 (2017)
https://doi.org/10.1155/2017/6075405

Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera)

Rodrigo Zaluski, Luis Antonio Justulin and Ricardo de Oliveira Orsi
Scientific Reports 7 (1) (2017)
https://doi.org/10.1038/s41598-017-15581-5

Distributions of imidacloprid, imidacloprid‐olefin and imidacloprid‐urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil

Marcela Seifrtova, Tatana Halesova, Klara Sulcova, Katerina Riddellova and Tomas Erban
Pest Management Science 73 (5) 1010 (2017)
https://doi.org/10.1002/ps.4418

Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae

Javier Hernández López, Sophie Krainer, Antonia Engert, Wolfgang Schuehly, Ulrike Riessberger-Gallé and Karl Crailsheim
Scientific Reports 7 (1) (2017)
https://doi.org/10.1038/srep40853

Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting

Andres N. Arce, Thomas I. David, Emma L. Randall, Ana Ramos Rodrigues, Thomas J. Colgan, Yannick Wurm, Richard J. Gill and Michael Pocock
Journal of Applied Ecology 54 (4) 1199 (2017)
https://doi.org/10.1111/1365-2664.12792

Effects of Neonicotinoids on Promoter-Specific Expression and Activity of Aromatase (CYP19) in Human Adrenocortical Carcinoma (H295R) and Primary Umbilical Vein Endothelial (HUVEC) Cells

Élyse Caron-Beaudoin, Michael S. Denison and J. Thomas Sanderson
Toxicological Sciences 149 (1) 134 (2016)
https://doi.org/10.1093/toxsci/kfv220

Non-cultivated plants present a season-long route of pesticide exposure for honey bees

Elizabeth Y. Long and Christian H. Krupke
Nature Communications 7 (1) (2016)
https://doi.org/10.1038/ncomms11629

Neonicotinoid concentrations in UK honey from 2013

Ainsley Jones and Gordon Turnbull
Pest Management Science 72 (10) 1897 (2016)
https://doi.org/10.1002/ps.4227

Honey Bees’ Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field

Léa Tison, Marie-Luise Hahn, Sophie Holtz, Alexander Rößner, Uwe Greggers, Gabriela Bischoff and Randolf Menzel
Environmental Science & Technology 50 (13) 7218 (2016)
https://doi.org/10.1021/acs.est.6b02658

Hybrid quadrupole-orbitrap mass spectrometry analysis with accurate-mass database and parallel reaction monitoring for high-throughput screening and quantification of multi-xenobiotics in honey

Yi Li, Jinzhen Zhang, Yue Jin, et al.
Journal of Chromatography A 1429 119 (2016)
https://doi.org/10.1016/j.chroma.2015.11.075

Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined

Maria Teresa Renzi, Marcel Amichot, David Pauron, et al.
Ecotoxicology and Environmental Safety 127 205 (2016)
https://doi.org/10.1016/j.ecoenv.2016.01.028

Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze

Elizabeth E. W. Samuelson, Zachary P. Chen-Wishart, Richard J. Gill and Ellouise Leadbeater
Scientific Reports 6 (1) (2016)
https://doi.org/10.1038/srep38957

An energetics-based honeybee nectar-foraging model used to assess the potential for landscape-level pesticide exposure dilution

Johannes M. Baveco, Andreas Focks, Dick Belgers, et al.
PeerJ 4 e2293 (2016)
https://doi.org/10.7717/peerj.2293

Sublethal Effects of Imidacloprid on Honey Bee Colony Growth and Activity at Three Sites in the U.S.

William G. Meikle, John J. Adamczyk, Milagra Weiss, et al.
PLOS ONE 11 (12) e0168603 (2016)
https://doi.org/10.1371/journal.pone.0168603

Combined effect of pollen quality and thiamethoxam on hypopharyngeal gland development and protein content in Apis mellifera

Maria Teresa Renzi, Neus Rodríguez-Gasol, Piotr Medrzycki, et al.
Apidologie 47 (6) 779 (2016)
https://doi.org/10.1007/s13592-016-0435-9

Synergistic and Antagonistic Interactions for Pesticide mixtures to Honeybee Larvae Toxicity

Min Kyoung Paik, Jeong Taek Im, Kyongmi Chon, et al.
Korean Journal of Environmental Agriculture 35 (4) 241 (2016)
https://doi.org/10.5338/KJEA.2016.35.4.32