Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Atmospheric non-thermal plasma inactivation of Ascosphaera apis, the causative agent of chalkbrood disease in honeybee

Thummanoon Boonmee, Chainarong Sinpoo, Kunlada Thayatham, Pradoong Suanpoot, Terd Disayathanoowat, Jeffery S. Pettis and Veeranan Chaimanee
Scientific Reports 14 (1) (2024)
https://doi.org/10.1038/s41598-024-52221-1

Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera

Tial C. Ling, Patcharin Phokasem, Chainarong Sinpoo, Panuwan Chantawannakul, Kitiphong Khongphinitbunjong and Terd Disayathanoowat
Animals 13 (8) 1318 (2023)
https://doi.org/10.3390/ani13081318

Detection of Ascosphaera apis, causing chalkbrood disease in the colonies of European honey bee, Apis mellifera in West Bengal, India

Rakesh Das, Ritesh Kumar, Gautam Kunal, Suraj Goldar, Subrata Dutta and Shantanu Jha
Sociobiology 70 (4) e9192 (2023)
https://doi.org/10.13102/sociobiology.v70i4.9129

Response to competing conspecific cues depends on social context in the honey bee Apis mellifera

Rebecca R. Westwick, Gavin P. Brackett, Cameron E. Brown, Bethany J. Ison and Clare C. Rittschof
Animal Behaviour 206 75 (2023)
https://doi.org/10.1016/j.anbehav.2023.09.015

Differential hygienic behavior of Apis cerana F. and Apis mellifera L. to Sacbrood virus infection

Yong-Soo Choi, Park-Hee Geun and Olga Frunze
Journal of Asia-Pacific Entomology 25 (4) 101995 (2022)
https://doi.org/10.1016/j.aspen.2022.101995

Analysis of the gut microbiome of susceptible and resistant honeybees (Apis cerana) against sacbrood virus disease

Chaerin Kim, Jin‐Myung Kim, Heeyun Choi, Yong‐Soo Choi, Byung‐Rae Jin, Kwang‐Sik Lee and Kihyuck Choi
Journal of Applied Entomology 146 (9) 1078 (2022)
https://doi.org/10.1111/jen.13057

Semi-automatic detection of honeybee brood hygiene—an example of artificial learning to facilitate ethological studies on social insects

Philipp Batz, Andreas Ruttor, Sebastian Thiel, Jakob Wegener, Fred Zautke, Christoph Schwekendiek and Kaspar Bienefeld
Biology Methods and Protocols 7 (1) (2022)
https://doi.org/10.1093/biomethods/bpac005

Honey Bee (Apis mellifera) Immunity

Nuria Morfin, Ricardo Anguiano-Baez and Ernesto Guzman-Novoa
Veterinary Clinics of North America: Food Animal Practice 37 (3) 521 (2021)
https://doi.org/10.1016/j.cvfa.2021.06.007

Transcriptomic analysis suggests candidate genes for hygienic behavior in African-derived Apis mellifera honeybees

Érica Weinstein Teixeira, Raquel Morais de Paiva Daibert, Luiz Afonso Glatzl Júnior, Marcos Vinicius Gualberto Barbosa da Silva, Maria Luisa Teles Marques Florencio Alves, Jay Daniel Evans and Amy Lynn Toth
Apidologie 52 (2) 447 (2021)
https://doi.org/10.1007/s13592-020-00834-6

The Effect of Artificial Media and Temperature on the Growth and Development of the Honey Bee Brood Pathogen Ascosphaera apis

Petr Mráz, Marian Hýbl, Marek Kopecký, et al.
Biology 10 (5) 431 (2021)
https://doi.org/10.3390/biology10050431

Elevated recapping behaviour and reduced Varroa destructor reproduction in natural Varroa resistant Apis mellifera honey bees from the UK

George Peter Hawkins and Stephen John Martin
Apidologie 52 (3) 647 (2021)
https://doi.org/10.1007/s13592-021-00852-y

Factors Affecting Immune Responses in Honey Bees: An Insight

Gurleen Kaur, Rohit Sharma, Ashun Chaudhary and Randeep Singh
Journal of Apicultural Science 65 (1) 25 (2021)
https://doi.org/10.2478/jas-2021-0012

Spatial distribution of recapping behaviour indicates clustering around Varroa infested cells

Isobel Grindrod and Stephen J. Martin
Journal of Apicultural Research 60 (5) 707 (2021)
https://doi.org/10.1080/00218839.2021.1890419

High resistance to Sacbrood virus disease in Apis cerana (Hymenoptera: Apidae) colonies selected for superior brood viability and hygienic behavior

Nguyen Ngoc Vung, Yong Soo Choi and Iksoo Kim
Apidologie 51 (1) 61 (2020)
https://doi.org/10.1007/s13592-019-00708-6

Genetic markers for the resistance of honey bee to Varroa destructor

M. D. Kaskinova, L. R. Gaifullina, E. S. Saltykova, A. V. Poskryakov and A. G. Nikolenko
Vavilov Journal of Genetics and Breeding 24 (8) 853 (2020)
https://doi.org/10.18699/VJ20.683

Effect of Immune Inducers on Nosema ceranae Multiplication and Their Impact on Honey Bee (Apis mellifera L.) Survivorship and Behaviors

Pegah Valizadeh, Ernesto Guzman-Novoa and Paul H. Goodwin
Insects 11 (9) 572 (2020)
https://doi.org/10.3390/insects11090572

Environmental gut bacteria in European honey bees (Apis mellifera) from Australia and their relationship to the chalkbrood disease

Sheba Khan, Doug Somerville, Michael Frese, Murali Nayudu and Wolfgang Blenau
PLOS ONE 15 (8) e0238252 (2020)
https://doi.org/10.1371/journal.pone.0238252

Chalkbrood : the Mycosis in Honeybees and its Control Measures

Yasuko HANAFUSA and Sota KOBAYASHI
Journal of Veterinary Epidemiology 24 (2) 101 (2020)
https://doi.org/10.2743/jve.24.101

Natural selection, selective breeding, and the evolution of resistance of honeybees (Apis mellifera) against Varroa

Jacques J. M. van Alphen and Bart Jan Fernhout
Zoological Letters 6 (1) (2020)
https://doi.org/10.1186/s40851-020-00158-4

Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera

Nadezhda V. Ostroverkhova
Veterinary Sciences 8 (1) 2 (2020)
https://doi.org/10.3390/vetsci8010002

Volatile disease markers of American foulbrood-infected larvae in Apis mellifera

Sujin Lee, Sooho Lim, Yong-Soo Choi, Myeong-lyeol Lee and Hyung Wook Kwon
Journal of Insect Physiology 122 104040 (2020)
https://doi.org/10.1016/j.jinsphys.2020.104040

Nitric oxide radicals are emitted by wasp eggs to kill mold fungi

Erhard Strohm, Gudrun Herzner, Joachim Ruther, Martin Kaltenpoth and Tobias Engl
eLife 8 (2019)
https://doi.org/10.7554/eLife.43718

Stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee

K. Wagoner, M. Spivak, A. Hefetz, T. Reams and O. Rueppell
Scientific Reports 9 (1) (2019)
https://doi.org/10.1038/s41598-019-45008-2

Hygienic behaviour in honeybees: a comparison of two recording methods and estimation of genetic parameters

Elena Facchini, Piter Bijma, Giulio Pagnacco, Rita Rizzi and Evert Willem Brascamp
Apidologie 50 (2) 163 (2019)
https://doi.org/10.1007/s13592-018-0627-6

Hygienic behaviour selection via freeze-killed honey bee brood not associated with chalkbrood resistance in eastern Australia

Jody Gerdts, R. Laurie Dewar, Michael Simone Finstrom, et al.
PLOS ONE 13 (11) e0203969 (2018)
https://doi.org/10.1371/journal.pone.0203969

A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.)

Alison McAfee, Abigail Chapman, Immacolata Iovinella, Ylonna Gallagher-Kurtzke, Troy F. Collins, Heather Higo, Lufiani L. Madilao, Paolo Pelosi and Leonard J. Foster
Scientific Reports 8 (1) (2018)
https://doi.org/10.1038/s41598-018-24054-2

Social response of healthy honeybees towards Nosema ceranae-infected workers: care or kill?

Sarah Biganski, Christoph Kurze, Matthias Y. Müller and Robin F. A. Moritz
Apidologie 49 (3) 325 (2018)
https://doi.org/10.1007/s13592-017-0557-8

Bioassays to Quantify Hygienic Behavior in Honey Bee (Apis Mellifera L.) Colonies: A Review

Gil Leclercq, Frédéric Francis, Nicolas Gengler and Tjeerd Blacquière
Journal of Apicultural Research 57 (5) 663 (2018)
https://doi.org/10.1080/00218839.2018.1494916

Drawbacks and benefits of hygienic behavior in honey bees (Apis mellifera L.): a review

Gil Leclercq, Bart Pannebakker, Nicolas Gengler, Bach Kim Nguyen and Frédéric Francis
Journal of Apicultural Research 56 (4) 366 (2017)
https://doi.org/10.1080/00218839.2017.1327938

Antimicrobial activity of plant extracts against the honeybee pathogens, Paenibacillus larvae and Ascosphaera apis and their topical toxicity to Apis mellifera adults

V. Chaimanee, U. Thongtue, N. Sornmai, S. Songsri and J.S. Pettis
Journal of Applied Microbiology 123 (5) 1160 (2017)
https://doi.org/10.1111/jam.13579

Odorant cues linked to social immunity induce lateralized antenna stimulation in honey bees (Apis mellifera L.)

Alison McAfee, Troy F. Collins, Lufiani L. Madilao and Leonard J. Foster
Scientific Reports 7 (1) (2017)
https://doi.org/10.1038/srep46171

Expression analysis of genes putatively associated with hygienic behavior in selected stocks of Apis mellifera L. from Argentina

A. C. Scannapieco, M. C. Mannino, G. Soto, et al.
Insectes Sociaux 64 (4) 485 (2017)
https://doi.org/10.1007/s00040-017-0567-6

Selection for resistance to Varroa destructor under commercial beekeeping conditions

John Kefuss, Jacques Vanpoucke, Maria Bolt and Cyril Kefuss
Journal of Apicultural Research 54 (5) 563 (2015)
https://doi.org/10.1080/00218839.2016.1160709

Differential viral levels and immune gene expression in three stocks of Apis mellifera induced by different numbers of Varroa destructor

Kitiphong Khongphinitbunjong, Lilia I. de Guzman, Matthew R. Tarver, et al.
Journal of Insect Physiology 72 28 (2015)
https://doi.org/10.1016/j.jinsphys.2014.11.005

Hygienic Behaviour of Honeybee Colonies with Different Levels of Polyandry and Genotypic Composition

Dariusz Gerula, Paweł Węgrzynowicz, Beata Panasiuk, Małgorzata Bieńkowska and Wojciech Skowronek
Journal of Apicultural Science 59 (2) 107 (2015)
https://doi.org/10.1515/jas-2015-0020

Swarming, defensive and hygienic behaviour in honey bee colonies of different genetic origin in a pan-European experiment

Aleksandar Uzunov, Cecilia Costa, Beata Panasiuk, et al.
Journal of Apicultural Research 53 (2) 248 (2014)
https://doi.org/10.3896/IBRA.1.53.2.06

Honey bee hygienic behaviour does not incur a cost via removal of healthy brood

G. Bigio, H. Al Toufailia and F. L. W. Ratnieks
Journal of Evolutionary Biology 27 (1) 226 (2014)
https://doi.org/10.1111/jeb.12288

The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees

Kirsten Foley, Géraldine Fazio, Annette B. Jensen and William O.H. Hughes
Veterinary Microbiology 169 (3-4) 203 (2014)
https://doi.org/10.1016/j.vetmic.2013.11.029

Analysis of aflatoxins, caffeine, nicotine and heavy metals in Palestinian multifloral honey from different geographic regions

Khalid M Swaileh and Ahed Abdulkhaliq
Journal of the Science of Food and Agriculture 93 (9) 2116 (2013)
https://doi.org/10.1002/jsfa.6014

Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States

Dennis vanEngelsdorp, David R. Tarpy, Eugene J. Lengerich and Jeffery S. Pettis
Preventive Veterinary Medicine 108 (2-3) 225 (2013)
https://doi.org/10.1016/j.prevetmed.2012.08.004

Hygienic Behavior of Africanized Honey Bees Apis mellifera Directed towards Brood in Old and New Combs during Diurnal and Nocturnal Periods

Rogério Pereira, Michelle Morais, Tiago Francoy and Lionel Gonçalves
Insects 4 (4) 521 (2013)
https://doi.org/10.3390/insects4040521

Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera

Caspar Schöning, Sebastian Gisder, Sven Geiselhardt, et al.
Journal of Experimental Biology 215 (2) 264 (2012)
https://doi.org/10.1242/jeb.062562

Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity of honey bee (Apis mellifera ligustica)

Chengcheng Li, Baohua Xu, Yuxi Wang, Qianqian Feng and Weiren Yang
Apidologie 43 (5) 576 (2012)
https://doi.org/10.1007/s13592-012-0126-0

Development of a 44K SNP assay focussing on the analysis of a varroa‐specific defence behaviour in honey bees (Apis mellifera carnica)

A. SPÖTTER, P. GUPTA, G. NÜRNBERG, N. REINSCH and K. BIENEFELD
Molecular Ecology Resources 12 (2) 323 (2012)
https://doi.org/10.1111/j.1755-0998.2011.03106.x

Breeding for hygienic behaviour in honeybees (Apis mellifera) using free-mated nucleus colonies

Stephen F. Pernal, Asheber Sewalem and Andony P. Melathopoulos
Apidologie 43 (4) 403 (2011)
https://doi.org/10.1007/s13592-011-0105-x

Breeding for resistance toVarroa destructorin North America

Thomas E. Rinderer, Jeffrey W. Harris, Gregory J. Hunt and Lilia I. de Guzman
Apidologie 41 (3) 409 (2010)
https://doi.org/10.1051/apido/2010015

Hygienic behaviors of honey bees in response to brood experimentally pin-killed or infected withAscosphaera apis

María Alejandra Palacio, Edgardo Rodriguez, Lionel Goncalves, Enrique Bedascarrasbure and Marla Spivak
Apidologie 41 (6) 602 (2010)
https://doi.org/10.1051/apido/2010022

Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera)

PETER R. OXLEY, MARLA SPIVAK and BENJAMIN P. OLDROYD
Molecular Ecology 19 (7) 1452 (2010)
https://doi.org/10.1111/j.1365-294X.2010.04569.x

Odorants that Induce Hygienic Behavior in Honeybees: Identification of Volatile Compounds in Chalkbrood-Infected Honeybee Larvae

Jodi A. I. Swanson, Baldwyn Torto, Stephen A. Kells, et al.
Journal of Chemical Ecology 35 (9) 1108 (2009)
https://doi.org/10.1007/s10886-009-9683-8

The ontogeny of immunity: Development of innate immune strength in the honey bee (Apis mellifera)

Noah Wilson-Rich, Stephanie T. Dres and Philip T. Starks
Journal of Insect Physiology 54 (10-11) 1392 (2008)
https://doi.org/10.1016/j.jinsphys.2008.07.016

The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L.

Jasna Kralj, Axel Brockmann, Stefan Fuchs and Jürgen Tautz
Journal of Comparative Physiology A 193 (3) 363 (2007)
https://doi.org/10.1007/s00359-006-0192-8

Persistence of conidia and potential efficacy of Beauveria bassiana against pinhole borers in New Zealand southern beech forests

Stephen D. Reay, Celine Hachet, Tracey L. Nelson, Michael Brownbridge and Travis R. Glare
Forest Ecology and Management 246 (2-3) 232 (2007)
https://doi.org/10.1016/j.foreco.2007.04.005

Field trial of honey bee colonies bred for mechanisms of resistance againstVarroa destructor

Abdullah Ibrahim, Gary S. Reuter and Marla Spivak
Apidologie 38 (1) 67 (2007)
https://doi.org/10.1051/apido:2006065

Inefficient task partitioning among nonhygienic honeybees, Apis mellifera L., and implications for disease transmission

H.S. Arathi, G. Ho and M. Spivak
Animal Behaviour 72 (2) 431 (2006)
https://doi.org/10.1016/j.anbehav.2006.01.018

The relationship between hygienic behavior and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance toVarroa destructor

Abdullah Ibrahim and Marla Spivak
Apidologie 37 (1) 31 (2006)
https://doi.org/10.1051/apido:2005052

Hygienic Behavior of Cape and European Apis mellifera (Hymenoptera: Apidae) toward Aethina tumida (Coleoptera: Nitidulidae) Eggs Oviposited in Sealed Bee Brood

James D. Ellis, Keith S. Delaplane, Cameron S. Richards, et al.
Annals of the Entomological Society of America 97 (4) 860 (2004)
https://doi.org/10.1603/0013-8746(2004)097[0860:HBOCAE]2.0.CO;2

In Vitro Fungistatic Effect of Essential Oils Against Ascosphaera apis

Silvina Larrán, Jorge A. Ringuelet, Marcelo R. Carranza, et al.
Journal of Essential Oil Research 13 (2) 122 (2001)
https://doi.org/10.1080/10412905.2001.9699633

Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L.

H.S. Arathi and M. Spivak
Animal Behaviour 62 (1) 57 (2001)
https://doi.org/10.1006/anbe.2000.1731

Resistencia a la enfermedad de cría yesificada por colonias de Apis mellifera con eficiente comportamiento higiénico (Hymenoptera, Apidae)

Ciro Invernizzi
Iheringia. Série Zoologia (91) 108 (2001)
https://doi.org/10.1590/S0073-47212001000200016

Ethology of Hygienic Behaviour in the Honey Bee Apis mellifera L. (Hymenoptera: Apidae): Behavioural repertoire of Hygienic bees

H.S. Arathi, I Burns and M. Spivak
Ethology 106 (4) 365 (2000)
https://doi.org/10.1046/j.1439-0310.2000.00556.x

Effects of worker genotypic diversity on honey bee colony development and behavior (Apis mellifera L.)

Robert E. Page, Gene E. Robinson, M. Kim Fondrk and Medhat E. Nasr
Behavioral Ecology and Sociobiology 36 (6) 387 (1995)
https://doi.org/10.1007/BF00177334

Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis

Martha Gilliam, Stephen Taber, Brenda J. Lorenz and Dorothy B. Prest
Journal of Invertebrate Pathology 52 (2) 314 (1988)
https://doi.org/10.1016/0022-2011(88)90141-3