Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Simultaneous PCR detection of Paenibacillus larvae targeting insertion sequence IS256 and Melissococcus plutonius targeting pMP1 plasmid from hive specimens

Katerina Vlkova, Tomas Erban, Martin Kamler, Dalibor Titera, Ibrahim Bitar and Jaroslav Hrabak
Folia Microbiologica 69 (2) 415 (2024)
https://doi.org/10.1007/s12223-023-01125-0

The Foster method: rapid and non-invasive detection of clinically significant American Foulbrood disease levels using eDNA sampling and a dual-target qPCR assay, with its potential for other hive pathogens

John F. Mackay, Rebecca E. Hewett, Noa T. Smith, Tammy L. Waters and John S. Scandrett
Journal of Apicultural Research 1 (2024)
https://doi.org/10.1080/00218839.2024.2306445

Emergent and Known Honey Bee Pathogens through Passive Surveillance in the Republic of Kosovo

Beqë Hulaj, Anna Granato, Fulvio Bordin, Izedin Goga, Xhavit Merovci, Mauro Caldon, Armend Cana, Laura Zulian, Rosa Colamonico and Franco Mutinelli
Applied Sciences 14 (3) 987 (2024)
https://doi.org/10.3390/app14030987

Effects of Disinfectants on Bacterium Paenibacillus larvae in Laboratory Conditions

Ivana Tlak Gajger, Zlatko Tomljanović, Franco Mutinelli, Anna Granato and Josipa Vlainić
Insects 15 (4) 268 (2024)
https://doi.org/10.3390/insects15040268

What proteomics has taught us about honey bee (Apis mellifera) health and disease

Maor Arad, Kenneth Ku, Connor Frey, Rhien Hare, Alison McAfee, Golfam Ghafourifar and Leonard J. Foster
PROTEOMICS (2024)
https://doi.org/10.1002/pmic.202400075

Effects of natural treatments on the varroa mite infestation levels and overall health of honey bee (Apis mellifera) colonies

Laura Narciso, Martina Topini, Sonia Ferraiuolo, Giovanni Ianiro, Cinzia Marianelli and Kai Wang
PLOS ONE 19 (5) e0302846 (2024)
https://doi.org/10.1371/journal.pone.0302846

Probing the interaction of Paenibacillus larvae bacteriophage as a biological agent to control the american foulbrood disease in honeybee

Rasha M. El-Meihy, Eman O. Hassan, Soha A. Alamoudi, Sally Negm, Nawal Al-Hoshani, Mariam S. Al-Ghamdi and Elhosseny E. Nowar
Saudi Journal of Biological Sciences 31 (6) 104002 (2024)
https://doi.org/10.1016/j.sjbs.2024.104002

The promise of probiotics in honeybee health and disease management

Khaoula Abdi, Mourad Ben Said, Elena Crotti, Ahmed Sleheddine Masmoudi and Ameur Cherif
Archives of Microbiology 205 (2) (2023)
https://doi.org/10.1007/s00203-023-03416-z

Paenibacillus larvae and their phages; a community science approach to discovery and initial testing of prophylactic phage cocktails against American Foulbrood in New Zealand

Danielle N. Kok, Diana Zhou, Philippos K. Tsourkas and Heather L. Hendrickson
Microbiome Research Reports 2 (4) (2023)
https://doi.org/10.20517/mrr.2023.16

BAL ARILARININ BAKTERİYEL HASTALIKLARI ve HASTALIKLARIN TEŞHİSİNE YÖNELİK GÜNCEL METOTLAR

Saliha BEDİZ ŞAHİN and Barış SAREYYÜPOĞLU
Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni 14 (3) 149 (2023)
https://doi.org/10.38137/VFTD.1392294

Identity and distribution of American foulbrood (Paenibacillus larvae) in South Africa

Yordan V. Hristov, Johannes J. Le Roux, Michael H. Allsopp and Theresa C. Wossler
Journal of Apicultural Research 62 (2) 303 (2023)
https://doi.org/10.1080/00218839.2021.1887635

Volatile biomarkers for non-invasive detection of American foulbrood, a threat to honey bee pollination services

Jessica M. Bikaun, Tiffane Bates, Maike Bollen, Gavin R. Flematti, Joanna Melonek, Praveen Praveen and Julia Grassl
Science of The Total Environment 845 157123 (2022)
https://doi.org/10.1016/j.scitotenv.2022.157123

A Probe-Based qPCR Method, Targeting 16S rRNA Gene, for the Quantification of Paenibacillus larvae Spores in Powdered Sugar Samples

Elena Carra, Giorgio Galletti, Emanuele Carpana, Federica Bergamini, Giulio Loglio, Filippo Bosi, Stefano Palminteri and Stefano Bassi
Applied Sciences 12 (19) 9895 (2022)
https://doi.org/10.3390/app12199895

Occurrence of Honey Bee (Apis mellifera L.) Pathogens in Wild Pollinators in Northern Italy

Giovanni Cilia, Simone Flaminio, Laura Zavatta, Rosa Ranalli, Marino Quaranta, Laura Bortolotti and Antonio Nanetti
Frontiers in Cellular and Infection Microbiology 12 (2022)
https://doi.org/10.3389/fcimb.2022.907489

Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees

Lucas Lannutti, Fernanda Noemi Gonzales, Maria José Dus Santos, Mónica Florin-Christensen and Leonhard Schnittger
Veterinary Sciences 9 (5) 221 (2022)
https://doi.org/10.3390/vetsci9050221

Identification of gallic acid in Trapa bispinosa as an effective inhibitor of the vegetative growth and spore germination of Paenibacillus larvae

Manhong YE, Xiaoyuan LI, Zhixia REN, Islam Mohd TAREQUL, Chao JI, Jian JI, Fubiao JI, Bin ZHOU and Shengmei YANG
Apidologie 53 (2) (2022)
https://doi.org/10.1007/s13592-022-00935-4

Powdered Sugar Examination as a Tool for the Assessment of Paenibacillus larvae Infection Levels in Honey Bee Colonies

Stefano Bassi, Giorgio Galletti, Emanuele Carpana, Stefano Palminteri, Filippo Bosi, Giulio Loglio and Elena Carra
Frontiers in Veterinary Science 9 (2022)
https://doi.org/10.3389/fvets.2022.853707

Isolation, characterization, and comparative genomic analysis of vB_PlaM_Pd22F, a new bacteriophage of the family Myoviridae

Arif Bozdeveci, Merve Karali, Rahşan Akpinar and Şengül Alpay Karaoğlu
Archives of Virology 167 (5) 1269 (2022)
https://doi.org/10.1007/s00705-022-05429-3

A novel multiplex PCR assay to detect and distinguish between different types of Paenibacillus larvae and Melissococcus plutonius, and a survey of foulbrood pathogen contamination in Japanese honey

Mariko OKAMOTO, Hirotaka FURUYA, Ikuko SUGIMOTO, Masahiro KUSUMOTO and Daisuke TAKAMATSU
Journal of Veterinary Medical Science 84 (3) 390 (2022)
https://doi.org/10.1292/jvms.21-0629

Isolation, characterization, and comparative genomic analysis of vB_PlaP_SV21, new bacteriophage of Paenibacillus larvae

Arif Bozdeveci, Rahşan Akpınar and Şengül Alpay Karaoğlu
Virus Research 305 198571 (2021)
https://doi.org/10.1016/j.virusres.2021.198571

Effect of the Bacterium Paenibacillus larvae larvae on Vitellogenin Gene Expression of the Queen Honey Bee Apis mellifera L.

S.A.S. Gomaa, E.M.S. Barakat, M.S. Salama and E.E. El-Gohary
African Entomology 29 (1) (2021)
https://doi.org/10.4001/003.029.0096

Development and evaluation of a core genome multilocus sequence typing scheme for Paenibacillus larvae, the deadly American foulbrood pathogen of honeybees

Alicia C. Bertolotti, Eva Forsgren, Marc O. Schäfer, Fabrice Sircoulomb, Nicolas Gaïani, Magali Ribière‐Chabert, Laurianne Paris, Pierrick Lucas, Claire de Boisséson, Joakim Skarin and Marie‐Pierre Rivière
Environmental Microbiology 23 (9) 5042 (2021)
https://doi.org/10.1111/1462-2920.15442

Detection of Lotmaria passim, Crithidia mellificae and Replicative Forms of Deformed Wing Virus and Kashmir Bee Virus in the Small Hive Beetle (Aethina tumida)

Antonio Nanetti, James D. Ellis, Ilaria Cardaio and Giovanni Cilia
Pathogens 10 (3) 372 (2021)
https://doi.org/10.3390/pathogens10030372

Volatile disease markers of American foulbrood-infected larvae in Apis mellifera

Sujin Lee, Sooho Lim, Yong-Soo Choi, Myeong-lyeol Lee and Hyung Wook Kwon
Journal of Insect Physiology 122 104040 (2020)
https://doi.org/10.1016/j.jinsphys.2020.104040

Feeding Honeybee Colonies with Honeybee-Specific Lactic Acid Bacteria (Hbs-LAB) Does Not Affect Colony-Level Hbs-LAB Composition or Paenibacillus larvae Spore Levels, Although American Foulbrood Affected Colonies Harbor a More Diverse Hbs-LAB Community

Sepideh Lamei, Jörg G. Stephan, Bo Nilson, et al.
Microbial Ecology 79 (3) 743 (2020)
https://doi.org/10.1007/s00248-019-01434-3

Evaluation of the presence of Paenibacillus larvae in commercial bee pollen using PCR amplification of the gene for tRNACys

Vicente Daniel Moreno Andrade, José Luis Hernández Flores, Miguel Angel Ramos López, et al.
Brazilian Journal of Microbiology 50 (2) 471 (2019)
https://doi.org/10.1007/s42770-019-00039-9

The secretome of honey bee-specific lactic acid bacteria inhibits Paenibacillus larvae growth

Sepideh Lamei, Jörg G. Stephan, Kristian Riesbeck, et al.
Journal of Apicultural Research 58 (3) 405 (2019)
https://doi.org/10.1080/00218839.2019.1572096

Occurrence of honey bee (Apis mellifera L.) pathogens in commercial and traditional hives

Elmin Taric, Uros Glavinic, Jevrosima Stevanovic, et al.
Journal of Apicultural Research 58 (3) 433 (2019)
https://doi.org/10.1080/00218839.2018.1554231

Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees

Kleber de Sousa Pereira, Ivan Meeus and Guy Smagghe
Scientific Reports 9 (1) (2019)
https://doi.org/10.1038/s41598-019-40804-2

Characterization of a new podovirus infecting Paenibacillus larvae

Henrique G. Ribeiro, Luís D. R. Melo, Hugo Oliveira, Maarten Boon, Rob Lavigne, Jean-Paul Noben, Joana Azeredo and Ana Oliveira
Scientific Reports 9 (1) (2019)
https://doi.org/10.1038/s41598-019-56699-y

Spores of Paenibacillus larvae, Ascosphaera apis, Nosema ceranae and Nosema apis in bee products supervised by the Brazilian Federal Inspection Service

Érica Weinstein Teixeira, Lubiane Guimarães-Cestaro, Maria Luisa Teles Marques Florêncio Alves, et al.
Revista Brasileira de Entomologia 62 (3) 188 (2018)
https://doi.org/10.1016/j.rbe.2018.04.001

Molecular detection of Melissococcus plutonius assessed in Africanized honey bee populations (Apis mellifera) in three regions of Colombia

Víctor Manuel Tibatá, Howard Junca, Andrés Sánchez, et al.
Journal of Apicultural Research 57 (3) 418 (2018)
https://doi.org/10.1080/00218839.2018.1439151

A PCR-Based Method for Distinguishing between Two Common Beehive Bacteria, Paenibacillus larvae and Brevibacillus laterosporus

Jordan A. Berg, Bryan D. Merrill, Donald P. Breakwell, Sandra Hope, Julianne H. Grose and Isaac Cann
Applied and Environmental Microbiology 84 (22) (2018)
https://doi.org/10.1128/AEM.01886-18

Evaluation of Quantitative PCR (qPCR) Paenibacillus larvae Targeted Assays and Definition of Optimal Conditions for Its Detection/Quantification in Honey and Hive Debris

Franca Rossi, Carmela Amadoro, Addolorato Ruberto and Luciano Ricchiuti
Insects 9 (4) 165 (2018)
https://doi.org/10.3390/insects9040165

10-HDA, A Major Fatty Acid of Royal Jelly, Exhibits pH Dependent Growth-Inhibitory Activity Against Different Strains of Paenibacillus larvae

Mária Šedivá, Maroš Laho, Lenka Kohútová, Andrea Mojžišová, Juraj Majtán and Jaroslav Klaudiny
Molecules 23 (12) 3236 (2018)
https://doi.org/10.3390/molecules23123236

Antibacterial activity of bryophyte species against Paenibacillus larvae isolates

Elif SEVİM, Yıldız BAŞ, Gonca ÇELİK, et al.
TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES 41 521 (2017)
https://doi.org/10.3906/vet-1611-70

Prevalence of common honey bee pathogens at selected apiaries in Kenya, 2013/2014

Juliette R. Ongus, Ayuka T. Fombong, Janet Irungu, Daniel Masiga and Suresh Raina
International Journal of Tropical Insect Science 1 (2017)
https://doi.org/10.1017/S1742758417000212

Biocidal properties of maltose reduced silver nanoparticles against American foulbrood diseases pathogens

Mustafa Çulha, Şaban Kalay, Elif Sevim, et al.
BioMetals 30 (6) 893 (2017)
https://doi.org/10.1007/s10534-017-0055-5

Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis

Tomas Erban, Ondrej Ledvinka, Martin Kamler, Marta Nesvorna, Bronislava Hortova, Jan Tyl, Dalibor Titera, Martin Markovic and Jan Hubert
Scientific Reports 7 (1) (2017)
https://doi.org/10.1038/s41598-017-05076-8

Multiple Locus Variable number of tandem repeat Analysis: A molecular genotyping tool for Paenibacillus larvae

Tine Descamps, Lina De Smet, Pieter Stragier, Paul De Vos and Dirk C. de Graaf
Microbial Biotechnology 9 (6) 772 (2016)
https://doi.org/10.1111/1751-7915.12375

Lysophosphatidylcholine acts in the constitutive immune defence against American foulbrood in adult honeybees

Ulrike Riessberger-Gallé, Javier Hernández-López, Gerald Rechberger, Karl Crailsheim and Wolfgang Schuehly
Scientific Reports 6 (1) (2016)
https://doi.org/10.1038/srep30699

The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay

Encarna Garrido‐Bailón, Mariano Higes, Amparo Martínez‐Salvador, Karina Antúnez, Cristina Botías, Aránzazu Meana, Lourdes Prieto and Raquel Martín‐Hernández
Microbial Biotechnology 6 (6) 731 (2013)
https://doi.org/10.1111/1751-7915.12070

Development of multiplex PCR for fast detection of Paenibacillus Larvae in putrid masses and in isolated bacterial colonies

N. V. Rusenova, P. Parvanov and S. Stanilova
Applied Biochemistry and Microbiology 49 (1) 79 (2013)
https://doi.org/10.1134/S0003683813010171

Paenibacillus larvae 16S–23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization

Douglas W. Dingman
Journal of Invertebrate Pathology 110 (3) 352 (2012)
https://doi.org/10.1016/j.jip.2012.03.026

ERIC-PCR Genotyping of Paenibacillus larvae in Southern Italian Honey and Brood Combs

Angela Di Pinto, Lucia Novello, Valentina Terio and Giuseppina Tantillo
Current Microbiology 63 (5) 416 (2011)
https://doi.org/10.1007/s00284-011-9996-z

Polar tube protein gene diversity among Nosema ceranae strains derived from a Greek honey bee health study

Fani Hatjina, Georgios Tsoktouridis, Maria Bouga, et al.
Journal of Invertebrate Pathology 108 (2) 131 (2011)
https://doi.org/10.1016/j.jip.2011.07.003

Multiplex PCR detection of slowly‐evolving trypanosomatids and neogregarines in bumblebees using broad‐range primers

I. Meeus, D.C. De Graaf, K. Jans and G. Smagghe
Journal of Applied Microbiology 109 (1) 107 (2010)
https://doi.org/10.1111/j.1365-2672.2009.04635.x

Lessons from the first international proficiency test for the detection of spores from the honey bee pathogen Paenibacillus larvae

Dirk C. de Graaf, Wolfgang Ritter, Frans J. Jacobs, et al.
Accreditation and Quality Assurance 14 (5) 273 (2009)
https://doi.org/10.1007/s00769-009-0495-x

A PCR method of detecting American Foulbrood (Paenibacillus larvae) in winter beehive wax debris

Stepan Ryba, Dalibor Titera, Marcela Haklova and Pavel Stopka
Veterinary Microbiology 139 (1-2) 193 (2009)
https://doi.org/10.1016/j.vetmic.2009.05.009

Ultra-rapid real-time PCR for the detection of Paenibacillus larvae, the causative agent of American Foulbrood (AFB)

Sang-Hoon Han, Do-Bu Lee, Dong-Woo Lee, Eul-Hwan Kim and Byoung-Su Yoon
Journal of Invertebrate Pathology 99 (1) 8 (2008)
https://doi.org/10.1016/j.jip.2008.04.010

Identification of Paenibacillus larvae to the subspecies level: An obstacle for AFB diagnosis

Dirk C. de Graaf, Paul De Vos, Marc Heyndrickx, et al.
Journal of Invertebrate Pathology 91 (2) 115 (2006)
https://doi.org/10.1016/j.jip.2005.10.010

Distribution of Melissococcus plutonius in Honeybee Colonies with and without Symptoms of European Foulbrood

Eva Forsgren, Anna Cassel Lundhagen, Anton Imdorf and Ingemar Fries
Microbial Ecology 50 (3) 369 (2005)
https://doi.org/10.1007/s00248-004-0188-2

A PCR-based method that permits specific detection of Paenibacillus larvae subsp. larvae, the cause of American Foulbrood of honey bees, at the subspecies level

A.M. Alippi, A.C. Lopez and O.M. Aguilar
Letters in Applied Microbiology 39 (1) 25 (2004)
https://doi.org/10.1111/j.1472-765X.2004.01535.x

Proposal to reclassify Paenibacillus larvae subsp. pulvifaciens DSM 3615 (ATCC 49843) as Paenibacillus larvae subsp. larvae. Results of a comparative biochemical and genetic study

Jochen Kilwinski, Martin Peters, Ainura Ashiralieva and Elke Genersch
Veterinary Microbiology 104 (1-2) 31 (2004)
https://doi.org/10.1016/j.vetmic.2004.08.001

Development and Evaluation of PCR Assays for the Detection of Paenibacillus larvae in Honey Samples: Comparison with Isolation and Biochemical Characterization

Tamás Bakonyi, Irmgard Derakhshifar, Elvira Grabensteiner and Norbert Nowotny
Applied and Environmental Microbiology 69 (3) 1504 (2003)
https://doi.org/10.1128/AEM.69.3.1504-1510.2003

Differentiation of Paenibacillus larvae subsp. larvae , the Cause of American Foulbrood of Honeybees, by Using PCR and Restriction Fragment Analysis of Genes Encoding 16S rRNA

Adriana M. Alippi, Ana Claudia López and O. Mario Aguilar
Applied and Environmental Microbiology 68 (7) 3655 (2002)
https://doi.org/10.1128/AEM.68.7.3655-3660.2002