Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Effects of sublethal fipronil exposure on cross-generational functional responses and gene expression in Binodoxys communis

Lingen Du, Likang Zhao, Punniyakotti Elumalai, Xiangzhen Zhu, Li Wang, Kaixin Zhang, Dongyang Li, Jichao Ji, Junyu Luo, Jinjie Cui and Xueke Gao
Environmental Science and Pollution Research (2024)
https://doi.org/10.1007/s11356-024-32211-6

Honey bee retinue workers respond similarly to queens despite seasonal differences in Queen Mandibular Pheromone (QMP) signaling

Mark J. Carroll, Nicholas J. Brown, Zachary Ruetz, Vincent A. Ricigliano, Kirk E. Anderson and Olav Rueppell
PLOS ONE 18 (9) e0291710 (2023)
https://doi.org/10.1371/journal.pone.0291710

The Identification of Bee Comb Cell Contents Using Semiconductor Gas Sensors

Beata Bąk, Jakub Wilk, Piotr Artiemjew, Maciej Siuda and Jerzy Wilde
Sensors 23 (24) 9811 (2023)
https://doi.org/10.3390/s23249811

Functional response of the hypopharyngeal glands to a social parasitism challenge in Southern African honey bee subspecies

Zoë Langlands, Esther E. du Rand, Abdullahi A. Yusuf and Christian W. W. Pirk
Parasitology Research 121 (1) 267 (2022)
https://doi.org/10.1007/s00436-021-07391-6

Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives

Francesca Scolari, Federica Valerio, Giovanni Benelli, Nikos T. Papadopoulos and Lucie Vaníčková
Insects 12 (5) 408 (2021)
https://doi.org/10.3390/insects12050408

Non-targeted lipidomics and transcriptomics analysis reveal the molecular underpinnings of mandibular gland development in Apis mellifera ligustica

Xiyi Hu, Weixing Zhang, Xuepeng Chi, Hongfang Wang, Zhenguo Liu, Ying Wang, Lanting Ma and Baohua Xu
Developmental Biology 479 23 (2021)
https://doi.org/10.1016/j.ydbio.2021.07.016

Tachykinin signaling inhibits task-specific behavioral responsiveness in honeybee workers

Bin Han, Qiaohong Wei, Fan Wu, et al.
eLife 10 (2021)
https://doi.org/10.7554/eLife.64830

Influence of brood pheromone on honey bee colony establishment and queen replacement

David R. Tarpy, Eric Talley and Bradley N. Metz
Journal of Apicultural Research 60 (2) 220 (2021)
https://doi.org/10.1080/00218839.2020.1867336

The Biology of the Cape Honey Bee, Apis mellifera capensis (Hymenoptera: Apidae): A Review of Thelytoky and Its Influence on Social Parasitism and Worker Reproduction

Fiona N Mumoki, Abdullahi A Yusuf, Christian W W Pirk, Robin M Crewe and Gadi V P Reddy
Annals of the Entomological Society of America 114 (2) 219 (2021)
https://doi.org/10.1093/aesa/saaa056

Biomonitoring for wide area surveying in landmine detection using honeybees and optical sensing

Ross N. Gillanders, James ME. Glackin, Zdenka Babić, Mario Muštra, Mitar Simić, Nikola Kezić, Graham A. Turnbull and Janja Filipi
Chemosphere 273 129646 (2021)
https://doi.org/10.1016/j.chemosphere.2021.129646

Honey Bee (Hymenoptera: Apidae) Nursing Responses to Cuticular Cues Emanating from Short-term Changes in Larval Rearing Environment

Bradley N Metz, Priyadarshini Chakrabarti, Ramesh R Sagili and Hongmei Li-Byarlay
Journal of Insect Science 21 (6) (2021)
https://doi.org/10.1093/jisesa/ieab085

Investigating Genetic and Phenotypic Variability of Queen Bees: Morphological and Reproductive Traits

Elena Facchini, Maria Grazia De Iorio, Federica Turri, Flavia Pizzi, Daniela Laurino, Marco Porporato, Rita Rizzi and Giulio Pagnacco
Animals 11 (11) 3054 (2021)
https://doi.org/10.3390/ani11113054

The Transcriptomic Landscape of Molecular Effects after Sublethal Exposure to Dinotefuran on Apis mellifera

Yuhao Zhang, Yali Du, Weihua Ma, Jinjia Liu and Yusuo Jiang
Insects 12 (10) 898 (2021)
https://doi.org/10.3390/insects12100898

Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization

Rong Ma, Juliana Rangel and Christina M. Grozinger
BMC Genomics 20 (1) (2019)
https://doi.org/10.1186/s12864-019-5923-7

Tergal gland components of reproductively dominant honey bee workers have both primer and releaser effects on subordinate workers

Olabimpe O. Okosun, Abdullahi A. Yusuf, Robin M. Crewe and Christian W. W. Pirk
Apidologie 50 (2) 173 (2019)
https://doi.org/10.1007/s13592-018-0628-5

Context matters: plasticity in response to pheromones regulating reproduction and collective behavior in social Hymenoptera

Margarita Orlova and Etya Amsalem
Current Opinion in Insect Science 35 69 (2019)
https://doi.org/10.1016/j.cois.2019.07.004

Genotypic Variability of the Queen Retinue Workers in Honeybee Colonies (Apis mellifera)

Y. Yi, W.Y. Yan, Y. Li, et al.
African Entomology 26 (1) 30 (2018)
https://doi.org/10.4001/003.026.0030

Sucrose response thresholds of honey bee (Apis mellifera) foragers are not modulated by brood ester pheromone

Bradley N. Metz, Hannah M. Lucas and Ramesh R. Sagili
Journal of Asia-Pacific Entomology 21 (2) 592 (2018)
https://doi.org/10.1016/j.aspen.2018.03.015

Honey bees consider larval nutritional status rather than genetic relatedness when selecting larvae for emergency queen rearing

Ramesh R. Sagili, Bradley N. Metz, Hannah M. Lucas, Priyadarshini Chakrabarti and Carolyn R. Breece
Scientific Reports 8 (1) (2018)
https://doi.org/10.1038/s41598-018-25976-7

Larval pheromones act as colony-wide regulators of collective foraging behavior in honeybees

R Ma, G Villar, C M Grozinger and J Rangel
Behavioral Ecology 29 (5) 1132 (2018)
https://doi.org/10.1093/beheco/ary090

High Concentrations of the Alarm Pheromone Component, Isopentyl Acetate, Reduces Foraging and Dancing in Apis mellifera Ligustica and Apis cerana Cerana

Zhiwen Gong, Chao Wang, Shihao Dong, et al.
Journal of Insect Behavior 30 (2) 188 (2017)
https://doi.org/10.1007/s10905-017-9606-4

Effect of Brood Pheromone on Survival and Nutrient Intake of African Honey Bees (Apis mellifera scutellata) under Controlled Conditions

Fabien J. Démares, Abdullahi A. Yusuf, Susan W. Nicolson and Christian W. W. Pirk
Journal of Chemical Ecology 43 (5) 443 (2017)
https://doi.org/10.1007/s10886-017-0840-1

Assessing the role of β-ocimene in regulating foraging behavior of the honey bee, Apis mellifera

Rong Ma, Ulrich G. Mueller and Juliana Rangel
Apidologie 47 (1) 135 (2016)
https://doi.org/10.1007/s13592-015-0382-x

Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica)

Xinmei Huo, Bin Wu, Mao Feng, Bin Han, Yu Fang, Yue Hao, Lifeng Meng, Abebe Jenberie Wubie, Pei Fan, Han Hu, Yuping Qi and Jianke Li
Journal of Proteome Research 15 (9) 3342 (2016)
https://doi.org/10.1021/acs.jproteome.6b00526

Effects of age and Reproductive Status on Tergal Gland Secretions in Queenless Honey bee Workers, Apis mellifera scutellata and A. m. capensis

Olabimpe O. Okosun, Abdullahi A. Yusuf, Robin M. Crewe and Christian W. W. Pirk
Journal of Chemical Ecology 41 (10) 896 (2015)
https://doi.org/10.1007/s10886-015-0630-6

Queen and young larval pheromones impact nursing and reproductive physiology of honey bee (Apis mellifera) workers

Kirsten S. Traynor, Yves Le Conte and Robert E. Page
Behavioral Ecology and Sociobiology 68 (12) 2059 (2014)
https://doi.org/10.1007/s00265-014-1811-y

A Socio‐Spatial Combined Approach Confirms a Highly Compartmentalised Structure in Honeybees

David Baracchi, Alessandro Cini and L. Fusani
Ethology 120 (12) 1167 (2014)
https://doi.org/10.1111/eth.12290

Social interactions affecting caste development through physiological actions in termites

Dai Watanabe, Hiroki Gotoh, Toru Miura and Kiyoto Maekawa
Frontiers in Physiology 5 (2014)
https://doi.org/10.3389/fphys.2014.00127

Standard methods for chemical ecology research in Apis mellifera

Baldwyn Torto, Mark J Carroll, Adrian Duehl, et al.
Journal of Apicultural Research 52 (4) 1 (2013)
https://doi.org/10.3896/IBRA.1.52.4.06

Biosynthesis of ethyl oleate, a primer pheromone, in the honey bee (Apis mellifera L.)

Carlos Castillo, Hao Chen, Carolyn Graves, et al.
Insect Biochemistry and Molecular Biology 42 (6) 404 (2012)
https://doi.org/10.1016/j.ibmb.2012.02.002

Effects of Brood Pheromone (SuperBoost) on Consumption of Protein Supplement and Growth of Honey Bee (Hymenoptera: Apidae) Colonies During Fall in a Northern Temperate Climate

Ramesh R. Sagili and Carolyn R. Breece
Journal of Economic Entomology 105 (4) 1134 (2012)
https://doi.org/10.1603/EC11437

Division of Labor Associated with Brood Rearing in the Honey Bee: How Does It Translate to Colony Fitness?

Ramesh R. Sagili, Tanya Pankiw, Bradley N. Metz and Gonzalo de Polavieja
PLoS ONE 6 (2) e16785 (2011)
https://doi.org/10.1371/journal.pone.0016785

A Clustering Algorithm for Wireless Sensor Networks Based on Social Insect Colonies

Chi-Tsun Cheng, Chi K. Tse and Francis C. M. Lau
IEEE Sensors Journal 11 (3) 711 (2011)
https://doi.org/10.1109/JSEN.2010.2063021

Stabilized synthetic brood pheromone delivered in a slow-release device enhances foraging and population size of honey bee, Apis mellifera, colonies

Tanya Pankiw, Anna L. Birmingham, Jean Pierre Lafontaine, Norman Avelino and John H. Borden
Journal of Apicultural Research 50 (4) 257 (2011)
https://doi.org/10.3896/IBRA.1.50.4.02

Task partitioning in honey bees: the roles of signals and cues in group-level coordination of action

B. R. Johnson
Behavioral Ecology 21 (6) 1373 (2010)
https://doi.org/10.1093/beheco/arq138

Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis

J. G. Oakeshott, R. M. Johnson, M. R. Berenbaum, H. Ranson, A. S. Cristino and C. Claudianos
Insect Molecular Biology 19 (s1) 147 (2010)
https://doi.org/10.1111/j.1365-2583.2009.00961.x

Variation in and Responses to Brood Pheromone of the Honey Bee (APIS mellifera L.)

Bradley N. Metz, Tanya Pankiw, Shane E. Tichy, Katherine A. Aronstein and Robin M. Crewe
Journal of Chemical Ecology 36 (4) 432 (2010)
https://doi.org/10.1007/s10886-010-9775-5

Deconstructing the Superorganism: Social Physiology, Groundplans, and Sociogenomics

Brian R. Johnson and Timothy A. Linksvayer
The Quarterly Review of Biology 85 (1) 57 (2010)
https://doi.org/10.1086/650290

Effect of primer pheromones and pollen diet on the food producing glands of worker honey bees (Apis mellifera L.)

Lizette Peters, Keyan Zhu-Salzman and Tanya Pankiw
Journal of Insect Physiology 56 (2) 132 (2010)
https://doi.org/10.1016/j.jinsphys.2009.09.014

Effects of Brood Pheromone Modulated Brood Rearing Behaviors on Honey Bee (Apis mellifera L.) Colony Growth

Ramesh R. Sagili and Tanya Pankiw
Journal of Insect Behavior 22 (5) 339 (2009)
https://doi.org/10.1007/s10905-009-9176-1

The effect of repeated vibration signals on worker behavior in established and newly founded colonies of the honey bee, Apis mellifera

Tuan T. Cao, Kelly M. Hyland, Alana Malechuk, Lee A. Lewis and Stanley S. Schneider
Behavioral Ecology and Sociobiology 63 (4) 521 (2009)
https://doi.org/10.1007/s00265-008-0686-1

The effects of young brood on the foraging behavior of two strains of honey bees (Apis mellifera)

Jennifer M. Tsuruda and Robert E. Page
Behavioral Ecology and Sociobiology 64 (2) 161 (2009)
https://doi.org/10.1007/s00265-009-0833-3

Division of labour and social insect colony performance in relation to task and mating number under two alternative response threshold models

R. Gove, M. Hayworth, M. Chhetri and O. Rueppell
Insectes Sociaux 56 (3) 319 (2009)
https://doi.org/10.1007/s00040-009-0028-y

Effects of protein-constrained brood food on honey bee (Apis mellifera L.) pollen foraging and colony growth

Ramesh R. Sagili and Tanya Pankiw
Behavioral Ecology and Sociobiology 61 (9) 1471 (2007)
https://doi.org/10.1007/s00265-007-0379-1

Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance

Susan W. Cobey
Apidologie 38 (4) 390 (2007)
https://doi.org/10.1051/apido:2007029

Africanized and European honey bee worker ovarian follicle development response to racial brood pheromone extracts

Tanya Pankiw and Celina Garza
Apidologie 38 (2) 156 (2007)
https://doi.org/10.1051/apido:2006066

The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L.

Jasna Kralj, Axel Brockmann, Stefan Fuchs and Jürgen Tautz
Journal of Comparative Physiology A 193 (3) 363 (2007)
https://doi.org/10.1007/s00359-006-0192-8

A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee

C. Claudianos, H. Ranson, R. M. Johnson, S. Biswas, M. A. Schuler, M. R. Berenbaum, R. Feyereisen and J. G. Oakeshott
Insect Molecular Biology 15 (5) 615 (2006)
https://doi.org/10.1111/j.1365-2583.2006.00672.x

Presence and titer of methyl palmitate in the Medfly (Ceratitis capitata) during reproductive maturation

T. Herman, I. Miloslavski, Z. Aizenshtat and S.W. Applebaum
Journal of Insect Physiology 51 (4) 473 (2005)
https://doi.org/10.1016/j.jinsphys.2005.02.004

Aggregation Response of Worker Honeybees (Apis Mellifera L.) to Queen Pheromone under Different Illumination

Gražina Vaitkevičienė and Ernest Ancevič
Acta Zoologica Lituanica 15 (3) 266 (2005)
https://doi.org/10.1080/13921657.2005.10512621

Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees

Isabelle Leoncini, Yves Le Conte, Guy Costagliola, Erika Plettner, Amy L. Toth, Mianwei Wang, Zachary Huang, Jean-Marc Bécard, Didier Crauser, Keith N. Slessor and Gene E. Robinson
Proceedings of the National Academy of Sciences 101 (50) 17559 (2004)
https://doi.org/10.1073/pnas.0407652101