Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

The effect of major abiotic stressors on honey bee (Apis mellifera L.) queens and potential impact on their progeny

Esmaeil Amiri, Hossam Abou-Shaara and Alison McAfee
Apidologie 56 (1) (2025)
https://doi.org/10.1007/s13592-024-01133-0

Impact of commercial plastic queen cell cups on rearing success and development of honey bee queens

Hossam Abou-Shaara, Somayeh Mehrparvar, Quentin D. Read, Jian Chen and Esmaeil Amiri
Journal of Apicultural Research 1 (2024)
https://doi.org/10.1080/00218839.2024.2418682

Temporal entry of pesticides through pollen into the bee hive and their fate in beeswax

Christina Kast, Jan Müller and Marion Fracheboud
Environmental Science and Pollution Research 31 (51) 61060 (2024)
https://doi.org/10.1007/s11356-024-35224-3

Sublethal Imidacloprid Administration to Honey Bee Workers is More Lethal to the Queen Larvae

Yun-Ru Chen, David T. W. Tzeng, Shih-Shun Lin and En-Cheng Yang
Environmental Toxicology and Chemistry 43 (10) 2232 (2024)
https://doi.org/10.1002/etc.5965

Assessment of synthetic acaricide residues in Royal Jelly

Emmanuel Karazafiris, Dimitrios Kanelis, Chrysoula Tananaki, Georgios Goras, Urania Menkissoglu-Spiroudi, Maria-Anna Rodopoulou, Vasilios Liolios, Nikolia Argena and Andreas Thrasyvoulou
Journal of Apicultural Research 63 (4) 762 (2024)
https://doi.org/10.1080/00218839.2022.2048948

Spatial distribution of two acaricides and five neonicotinoids in beehives and surrounding environments in China

Jingliang Shi, Xiaolong Wang, Zeyou Chen, Daqing Mao and Yi Luo
Journal of Hazardous Materials 469 133892 (2024)
https://doi.org/10.1016/j.jhazmat.2024.133892

Sublethal acetamiprid exposure induces immunity, suppresses pathways linked to juvenile hormone synthesis in queens and affects cycle-related signaling in emerging bees

Tomas Erban, Martin Markovic and Bruno Sopko
Environmental Pollution 349 123901 (2024)
https://doi.org/10.1016/j.envpol.2024.123901

Does the use of chlorantraniliprole during queen development adversely impact health and viability?

Qibao He, Ya Wei, Yancan Wu, Qing Yang, Yaohui Wang, Quan Gao, Jinjing Xiao, Linsheng Yu and Haiqun Cao
Pesticide Biochemistry and Physiology 202 105920 (2024)
https://doi.org/10.1016/j.pestbp.2024.105920

Toxicity of Coumaphos Residues in Beeswax Foundation to the Honey Bee Brood

Christina Kast, Benoît Droz and Verena Kilchenmann
Environmental Toxicology and Chemistry 42 (8) 1816 (2023)
https://doi.org/10.1002/etc.5645

Spatial clusters of Varroa destructor control strategies in Europe

Robert Brodschneider, Johannes Schlagbauer, Iliyana Arakelyan, Alexis Ballis, Jan Brus, Valters Brusbardis, Luis Cadahía, Jean-Daniel Charrière, Robert Chlebo, Mary F. Coffey, Bram Cornelissen, Cristina Amaro da Costa, Ellen Danneels, Jiří Danihlík, Constantin Dobrescu, Garth Evans, Mariia Fedoriak, Ivan Forsythe, Aleš Gregorc, Jes Johannesen, Lassi Kauko, Preben Kristiansen, Maritta Martikkala, Raquel Martín-Hernández, Ewa Mazur, et al.
Journal of Pest Science 96 (2) 759 (2023)
https://doi.org/10.1007/s10340-022-01523-2

Transcriptomic analysis of the honey bee (Apis mellifera) queen brain reveals that gene expression is affected by pesticide exposure during development

Myra Dickey, Elizabeth M. Walsh, Tonya F. Shepherd, Raul F. Medina, Aaron Tarone, Juliana Rangel and Olav Rueppell
PLOS ONE 18 (4) e0284929 (2023)
https://doi.org/10.1371/journal.pone.0284929

A longitudinal experiment demonstrates that honey bee colonies managed organically are as healthy and productive as those managed conventionally

Robyn M. Underwood, Brooke L. Lawrence, Nash E. Turley, Lizzette D. Cambron-Kopco, Parry M. Kietzman, Brenna E. Traver and Margarita M. López-Uribe
Scientific Reports 13 (1) (2023)
https://doi.org/10.1038/s41598-023-32824-w

Assessment of Spatial Variations in Pesticide, Heavy Metal, and Selenium Residues in Honey Bee (Apis mellifera L.) Products

Mai M. Awad and Randall B. Boone
Sci 5 (2) 24 (2023)
https://doi.org/10.3390/sci5020024

Re-using food resources from failed honey bee (Apis mellifera L.) colonies and their impact on colony queen rearing capacity

Rogan Tokach, Autumn Smart and Judy Wu-Smart
Scientific Reports 13 (1) (2023)
https://doi.org/10.1038/s41598-023-44037-2

Binding and Detoxification of Insecticides by Potentially Probiotic Lactic Acid Bacteria Isolated from Honeybee (Apis mellifera L.) Environment—An In Vitro Study

Aleksandra Leska, Adriana Nowak, Karolina Miśkiewicz and Justyna Rosicka-Kaczmarek
Cells 11 (23) 3743 (2022)
https://doi.org/10.3390/cells11233743

Transfer of xenobiotics from contaminated beeswax into different bee matrices under field conditions and the related exposure probability

Abdulrahim T. Alkassab, Gabriela Bischoff, David Thorbahn, Malte Frommberger and Jens Pistorius
Chemosphere 307 135615 (2022)
https://doi.org/10.1016/j.chemosphere.2022.135615

Selection of stable reference genes for real-time quantitative PCR in honey bee pesticide toxicity studies

Sanghyeon Kim, Susie Cho and Si Hyeock Lee
Journal of Apicultural Research 61 (1) 26 (2022)
https://doi.org/10.1080/00218839.2021.1950972

Decreased Mite Reproduction to Select Varroa destructor (Acari: Varroidae) Resistant Honey Bees (Hymenoptera: Apidae): Limitations and Potential Methodological Improvements

Adrien von Virag, Matthieu Guichard, Markus Neuditschko, Vincent Dietemann, Benjamin Dainat and Reed Johnson
Journal of Economic Entomology 115 (3) 695 (2022)
https://doi.org/10.1093/jee/toac022

Pesticide risk assessment in honeybees: Toward the use of behavioral and reproductive performances as assessment endpoints

Lena Barascou, Jean-Luc Brunet, Luc Belzunces, Axel Decourtye, Mickael Henry, Julie Fourrier, Yves Le Conte and Cedric Alaux
Chemosphere 276 130134 (2021)
https://doi.org/10.1016/j.chemosphere.2021.130134

Effects of late miticide treatments on foraging and colony productivity of European honey bees (Apis mellifera)

Théotime Colin, Casey C. Forster, Jack Westacott, Xiaobo Wu, William G. Meikle and Andrew B. Barron
Apidologie 52 (2) 474 (2021)
https://doi.org/10.1007/s13592-020-00837-3

Elevated Mating Frequency in Honey Bee (Hymenoptera: Apidae) Queens Exposed to the Miticide Amitraz During Development

Elizabeth M Walsh, Mark A Janowiecki, Kyle Zhu, Nancy H Ing, Edward Lind Vargo, Juliana Rangel and Qian ‘Karen’ Sun
Annals of the Entomological Society of America 114 (5) 620 (2021)
https://doi.org/10.1093/aesa/saaa041

Effects of developmental exposure to pesticides in wax and pollen on honey bee (Apis mellifera) queen reproductive phenotypes

Joseph P. Milone and David R. Tarpy
Scientific Reports 11 (1) (2021)
https://doi.org/10.1038/s41598-020-80446-3

Directed evolution of Metarhizium fungus improves its biocontrol efficacy against Varroa mites in honey bee colonies

Jennifer O. Han, Nicholas L. Naeger, Brandon K. Hopkins, David Sumerlin, Paul E. Stamets, Lori M. Carris and Walter S. Sheppard
Scientific Reports 11 (1) (2021)
https://doi.org/10.1038/s41598-021-89811-2

Assessing Varroa destructor acaricide resistance in Apis mellifera colonies of Virginia

Morgan A. Roth, James M. Wilson and Aaron D. Gross
Apidologie 52 (6) 1278 (2021)
https://doi.org/10.1007/s13592-021-00901-6

Comparison of sublethal effects of natural acaricides carvacrol and thymol on honeybees

Gordana Glavan, Sara Novak, Janko Božič and Anita Jemec Kokalj
Pesticide Biochemistry and Physiology 166 104567 (2020)
https://doi.org/10.1016/j.pestbp.2020.104567

Abdominal contact of fluvalinate induces olfactory deficit in Apis mellifera

Sooho Lim, Ural Yunusbaev, Rustem Ilyasov, Hyun Sook Lee and Hyung Wook Kwon
Pesticide Biochemistry and Physiology 164 221 (2020)
https://doi.org/10.1016/j.pestbp.2020.02.005

Lithium contamination of honeybee products and its accumulation in brood as a consequence of anti-varroa treatment

Janez Prešern, Uroš Kur, Jernej Bubnič and Martin Šala
Food Chemistry 330 127334 (2020)
https://doi.org/10.1016/j.foodchem.2020.127334

Effect of contamination and adulteration of wax foundations on the brood development of honeybees

Abdulrahim T. Alkassab, David Thorbahn, Malte Frommberger, Gabriela Bischoff and Jens Pistorius
Apidologie 51 (4) 642 (2020)
https://doi.org/10.1007/s13592-020-00749-2

A Brief Overview on the Application, Potential Exposure Routes, and the Effects of Neonicotinoid Insecticides on the Honey Bee Pest Varroa Mite

Masoud M. Ardestani
Proceedings of the Zoological Society 73 (2) 118 (2020)
https://doi.org/10.1007/s12595-019-00305-6

Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development

Elizabeth M. Walsh, Stephen Sweet, Anthony Knap, Nancy Ing and Juliana Rangel
Behavioral Ecology and Sociobiology 74 (3) (2020)
https://doi.org/10.1007/s00265-020-2810-9

Distribution of coumaphos in beeswax after treatment of honeybee colonies with CheckMite® against the parasitical mite Varroa destructor

Christina Kast, Verena Kilchenmann and Benoît Droz
Apidologie 51 (1) 112 (2020)
https://doi.org/10.1007/s13592-019-00724-6

Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees

Noëmie El Agrebi, Kirsten Traynor, Olivier Wilmart, et al.
Science of The Total Environment 745 141036 (2020)
https://doi.org/10.1016/j.scitotenv.2020.141036

The Plight of the Honeybee: A Socioecological Analysis of large‐scale Beekeeping in the United States

Laurent Cilia
Sociologia Ruralis 59 (4) 831 (2019)
https://doi.org/10.1111/soru.12253

Gene expression, sperm viability, and queen (Apis mellifera) loss following pesticide exposure under laboratory and field conditions

Veeranan Chaimanee and Jeffery S. Pettis
Apidologie 50 (3) 304 (2019)
https://doi.org/10.1007/s13592-019-00645-4

Brain transcriptome of honey bees (Apis mellifera) exhibiting impaired olfactory learning induced by a sublethal dose of imidacloprid

Zhiguo Li, Tiantian Yu, Yanping Chen, et al.
Pesticide Biochemistry and Physiology 156 36 (2019)
https://doi.org/10.1016/j.pestbp.2019.02.001

Beekeeping and honey bee colony health: A review and conceptualization of beekeeping management practices implemented in Europe

Giorgio Sperandio, Anna Simonetto, Edoardo Carnesecchi, Cecilia Costa, Fani Hatjina, Simone Tosi and Gianni Gilioli
Science of The Total Environment 696 133795 (2019)
https://doi.org/10.1016/j.scitotenv.2019.133795

Stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee

K. Wagoner, M. Spivak, A. Hefetz, T. Reams and O. Rueppell
Scientific Reports 9 (1) (2019)
https://doi.org/10.1038/s41598-019-45008-2

Is the Brood Pattern within a Honey Bee Colony a Reliable Indicator of Queen Quality?

Kathleen V. Lee, Michael Goblirsch, Erin McDermott, David R. Tarpy and Marla Spivak
Insects 10 (1) 12 (2019)
https://doi.org/10.3390/insects10010012

Initial Exposure of Wax Foundation to Agrochemicals Causes Negligible Effects on the Growth and Winter Survival of Incipient Honey Bee (Apis mellifera) Colonies

Alexandria N. Payne, Elizabeth M. Walsh and Juliana Rangel
Insects 10 (1) 19 (2019)
https://doi.org/10.3390/insects10010019

The effect of Agaricus brasiliensis extract supplementation on honey bee colonies

JEVROSIMA STEVANOVIC, ZORAN STANIMIROVIC, PREDRAG SIMEUNOVIC, et al.
Anais da Academia Brasileira de Ciências 90 (1) 219 (2018)
https://doi.org/10.1590/0001-3765201820150182

The condition of honey bee colonies (Apis mellifera) treated for Varroa destructor by different methods

Beata Bąk, Jerzy Wilde and Maciej Siuda
Journal of Apicultural Research 57 (5) 674 (2018)
https://doi.org/10.1080/00218839.2018.1495440

Transfer of the Active Ingredients of Some Plant Protection Products from Raspberry Plants to Beehives

Bartosz Piechowicz, Ewa Szpyrka, Lech Zaręba, Magdalena Podbielska and Przemysław Grodzicki
Archives of Environmental Contamination and Toxicology 75 (1) 45 (2018)
https://doi.org/10.1007/s00244-017-0488-4

Managed honeybee colony losses of the Eastern honeybee (Apis cerana) in China (2011–2014)

Chao Chen, Zhiguang Liu, Yuexiong Luo, et al.
Apidologie 48 (5) 692 (2017)
https://doi.org/10.1007/s13592-017-0514-6

Honey bee‐collected pollen in agro‐ecosystems reveals diet diversity, diet quality, and pesticide exposure

Megan J. Colwell, Geoffrey R. Williams, Rodger C. Evans and Dave Shutler
Ecology and Evolution 7 (18) 7243 (2017)
https://doi.org/10.1002/ece3.3178

Discoloration and Adsorption of Acaricides from Beeswax

Josep Serra Bonvehi and Fco. Jose Orantes‐Bermejo
Journal of Food Process Engineering 40 (1) (2017)
https://doi.org/10.1111/jfpe.12344

Effects of synthetic acaricides on honey bee grooming behavior against the parasitic Varroa destructor mite

Igor Medici de Mattos, Ademilson E. E. Soares and David R. Tarpy
Apidologie 48 (4) 483 (2017)
https://doi.org/10.1007/s13592-017-0491-9

Effects of abamectin and deltamethrin to the foragers honeybee workers of Apis mellifera jemenatica (Hymenoptera: Apidae) under laboratory conditions

Dalal Musleh Aljedani
Saudi Journal of Biological Sciences 24 (5) 1007 (2017)
https://doi.org/10.1016/j.sjbs.2016.12.007

Chemical and cultural control of Tropilaelaps mercedesae mites in honeybee (Apis mellifera) colonies in Northern Thailand

Jeffery S. Pettis, Robyn Rose, Veeranan Chaimanee and Xiao-Yue Hong
PLOS ONE 12 (11) e0188063 (2017)
https://doi.org/10.1371/journal.pone.0188063

Effects of steel foundation wire on elemental content and hygienic removal of honey bee (Apis mellifera) brood

Kaira Malinda Wagoner and Olav Rueppell
Journal of Apicultural Research 56 (3) 270 (2017)
https://doi.org/10.1080/00218839.2017.1294525

Eterična olja s potencialom za zatiranje varoje (Varroa destructor): mehanizmi toksičnosti in negativen vpliv na medonosno čebelo (Apis mellifera)

Anita Jemec Kokalj and Gordana Glavan
Acta Biologica Slovenica 60 (2) 3 (2017)
https://doi.org/10.14720/abs.60.2.15682

Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera

Eva Vianey Alquisira-Ramírez, Guadalupe Peña-Chora, Víctor Manuel Hernández-Velázquez, et al.
Ecotoxicology and Environmental Safety 142 69 (2017)
https://doi.org/10.1016/j.ecoenv.2017.03.050

Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies

Matthew D. Smart, Jeff S. Pettis, Ned Euliss and Marla S. Spivak
Agriculture, Ecosystems & Environment 230 139 (2016)
https://doi.org/10.1016/j.agee.2016.05.030

Sublethal Effects of Imidacloprid on Honey Bee Colony Growth and Activity at Three Sites in the U.S.

William G. Meikle, John J. Adamczyk, Milagra Weiss, et al.
PLOS ONE 11 (12) e0168603 (2016)
https://doi.org/10.1371/journal.pone.0168603

Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann)

Ivanka Cizelj, Gordana Glavan, Janko Božič, et al.
Pesticide Biochemistry and Physiology 128 68 (2016)
https://doi.org/10.1016/j.pestbp.2015.09.015

Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos

Veeranan Chaimanee, Jay D. Evans, Yanping Chen, Caitlin Jackson and Jeffery S. Pettis
Journal of Insect Physiology 89 1 (2016)
https://doi.org/10.1016/j.jinsphys.2016.03.004

The ectoparasitic mite Tropilaelaps mercedesae reduces western honey bee, Apismellifera, longevity and emergence weight, and promotes Deformed wing virus infections

Kitiphong Khongphinitbunjong, Peter Neumann, Panuwan Chantawannakul and Geoffrey R. Williams
Journal of Invertebrate Pathology 137 38 (2016)
https://doi.org/10.1016/j.jip.2016.04.006

A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors

EFSA Supporting Publications 13 (7) (2016)
https://doi.org/10.2903/sp.efsa.2016.EN-1069

Pesticides for Apicultural and/or Agricultural Application Found in Belgian Honey Bee Wax Combs

Jorgen Ravoet, Wim Reybroeck and Dirk C. de Graaf
Bulletin of Environmental Contamination and Toxicology 94 (5) 543 (2015)
https://doi.org/10.1007/s00128-015-1511-y

The presence of synthetic acaricides in beeswax and its influence on the development of resistance in Varroa destructor

Sandra K. Medici, Matías D. Maggi, Edgardo G. Sarlo, et al.
Journal of Apicultural Research 54 (3) 267 (2015)
https://doi.org/10.1080/00218839.2016.1145407

The combined effects of miticides on the mating health of honey bee (Apis mellifera L.) queens

Juliana Rangel and David R. Tarpy
Journal of Apicultural Research 54 (3) 275 (2015)
https://doi.org/10.1080/00218839.2016.1147218

Neonicotinoid pesticides severely affect honey bee queens

Geoffrey R. Williams, Aline Troxler, Gina Retschnig, Kaspar Roth, Orlando Yañez, Dave Shutler, Peter Neumann and Laurent Gauthier
Scientific Reports 5 (1) (2015)
https://doi.org/10.1038/srep14621

Fipronil and imidacloprid reduce honeybee mitochondrial activity

Daniel Nicodemo, Marcos A. Maioli, Hyllana C.D. Medeiros, Marieli Guelfi, Kamila V.B. Balieira, David De Jong and Fábio E. Mingatto
Environmental Toxicology and Chemistry 33 (9) 2070 (2014)
https://doi.org/10.1002/etc.2655

Results of international standardised beekeeper surveys of colony losses for winter 2012–2013: analysis of winter loss rates and mixed effects modelling of risk factors for winter loss

Romée van der Zee, Robert Brodschneider, Valters Brusbardis, et al.
Journal of Apicultural Research 53 (1) 19 (2014)
https://doi.org/10.3896/IBRA.1.53.1.02

Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera)

Daniel R. Schmehl, Peter E.A. Teal, James L. Frazier and Christina M. Grozinger
Journal of Insect Physiology 71 177 (2014)
https://doi.org/10.1016/j.jinsphys.2014.10.002

Produção de abelhas rainha européias (Apis mellifera), utilizando diferentes métodos de manejo em Captain Cook, Havai, EUA

Daniel Santiago Pereira, Wesley Adson Costa Coelho, Benito Soto Blanco and Patrício Borges Maracajá
ACTA Apicola Brasilica 2 (1) 08 (2014)
https://doi.org/10.18378/aab.v2i1.3031

Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure

Christoph Sandrock, Matteo Tanadini, Lorenzo G. Tanadini, et al.
PLoS ONE 9 (8) e103592 (2014)
https://doi.org/10.1371/journal.pone.0103592

Effect of Flumethrin on Survival and Olfactory Learning in Honeybees

Ken Tan, Shuang Yang, Zhengwei Wang, Randolf Menzel and Frederic Marion-Poll
PLoS ONE 8 (6) e66295 (2013)
https://doi.org/10.1371/journal.pone.0066295

The synergy of xenobiotics in honey bee Apis mellifera: mechanisms and effects

Gordana Glavan and Janko Božič
Acta Biologica Slovenica 56 (1) 11 (2013)
https://doi.org/10.14720/abs.56.1.15546

Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides

Paula Melisa Garrido, Karina Antúnez, Mariana Martín, et al.
Journal of Insect Physiology 59 (1) 113 (2013)
https://doi.org/10.1016/j.jinsphys.2012.10.019

Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)

Jennifer A. Berry, W. Michael Hood, Stéphane Pietravalle, Keith S. Delaplane and Guy Smagghe
PLoS ONE 8 (10) e76536 (2013)
https://doi.org/10.1371/journal.pone.0076536

Standard methods for toxicology research in Apis mellifera

Piotr Medrzycki, Hervé Giffard, Pierrick Aupinel, et al.
Journal of Apicultural Research 52 (4) 1 (2013)
https://doi.org/10.3896/IBRA.1.52.4.14

Effect of in-hive miticides on drone honey bee survival and sperm viability

Reed M Johnson, Lizette Dahlgren, Blair D Siegfried and Marion D Ellis
Journal of Apicultural Research 52 (2) 88 (2013)
https://doi.org/10.3896/IBRA.1.52.2.18

Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival

Elisabeth H. Frost, Dave Shutler and Neil Kirk Hillier
Journal of Experimental Biology 216 (15) 2931 (2013)
https://doi.org/10.1242/jeb.086538

Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States

Dennis vanEngelsdorp, David R. Tarpy, Eugene J. Lengerich and Jeffery S. Pettis
Preventive Veterinary Medicine 108 (2-3) 225 (2013)
https://doi.org/10.1016/j.prevetmed.2012.08.004

Correlation of queen size and spermathecal contents and effects of miticide exposure during development

Anita M. Collins and Jeffery S. Pettis
Apidologie 44 (3) 351 (2013)
https://doi.org/10.1007/s13592-012-0186-1

The Effects of Pesticides on Queen Rearing and Virus Titers in Honey Bees (Apis mellifera L.)

Gloria DeGrandi-Hoffman, Yanping Chen and Roger Simonds
Insects 4 (1) 71 (2013)
https://doi.org/10.3390/insects4010071

Scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (Apis mellifera , Bombus spp. and solitary bees)

EFSA Journal 10 (5) 2668 (2012)
https://doi.org/10.2903/j.efsa.2012.2668

Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor)

Aleš Gregorc, Jay D. Evans, Mike Scharf and James D. Ellis
Journal of Insect Physiology 58 (8) 1042 (2012)
https://doi.org/10.1016/j.jinsphys.2012.03.015

Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera

Humberto Boncristiani, Robyn Underwood, Ryan Schwarz, et al.
Journal of Insect Physiology 58 (5) 613 (2012)
https://doi.org/10.1016/j.jinsphys.2011.12.011

Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

Jeffery S. Pettis, Dennis vanEngelsdorp, Josephine Johnson and Galen Dively
Naturwissenschaften 99 (2) 153 (2012)
https://doi.org/10.1007/s00114-011-0881-1

The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera L.)

Deborah A. Delaney, Jennifer J. Keller, Joel R. Caren and David R. Tarpy
Apidologie 42 (1) 1 (2011)
https://doi.org/10.1051/apido/2010027

Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides

Ales Gregorc and James D. Ellis
Pesticide Biochemistry and Physiology 99 (2) 200 (2011)
https://doi.org/10.1016/j.pestbp.2010.12.005

Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity

Judy Y. Wu, Carol M. Anelli, Walter S. Sheppard and Frederic Marion-Poll
PLoS ONE 6 (2) e14720 (2011)
https://doi.org/10.1371/journal.pone.0014720

Heat shock proteins and cell death in situ localisation in hypopharyngeal glands of honeybee (Apis mellifera carnica) workers after imidacloprid or coumaphos treatment

Maja Ivana Smodiš Škerl and Aleš Gregorc
Apidologie 41 (1) 73 (2010)
https://doi.org/10.1051/apido/2009051

Weighing Risk Factors Associated with Bee Colony Collapse Disorder by Classification and Regression Tree Analysis

Dennis VanEngelsdorp, Niko Speybroeck, Jay D. Evans, et al.
Journal of Economic Entomology 103 (5) 1517 (2010)
https://doi.org/10.1603/EC09429

Acaricides and their residues in Spanish commercial beeswax

Josep Serra‐Bonvehí and José Orantes‐Bermejo
Pest Management Science 66 (11) 1230 (2010)
https://doi.org/10.1002/ps.1999