Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Impacts of high temperature during early capped brood on pupal development and the size of appendages in adult workers Apis cerana

Xinjian Xu, Xia Du, Shujing Zhou, Bingfeng Zhou, Kang Lai, Qing Wang, Han Li, Chenyu Zhu, Hongzhi Xu, Xianlan Zhang, Mingjie Cao and Xiangjie Zhu
Frontiers in Ecology and Evolution 11 (2023)
https://doi.org/10.3389/fevo.2023.1144216

Transmission of a bumblebee parasite is robust despite parasite exposure to extreme temperatures

Hannah S. Wolmuth‐Gordon and Mark J. F. Brown
Ecology and Evolution 13 (7) (2023)
https://doi.org/10.1002/ece3.10379

Determination of the optimal maturation temperature for adult honey bee toxicity testing

Susie Cho, Si Hyeock Lee and Sanghyeon Kim
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 257 109359 (2022)
https://doi.org/10.1016/j.cbpc.2022.109359

Short-term hyperthermia at larval age reduces sucrose responsiveness of adult honeybees and can increase life span

Arne Kablau, Stefan Berg, Benjamin Rutschmann and Ricarda Scheiner
Apidologie 51 (4) 570 (2020)
https://doi.org/10.1007/s13592-020-00743-8

Poor hive thermoregulation produces an Allee effect and leads to colony collapse

Zeaiter Zeaiter and Mary R. Myerscough
Journal of Theoretical Biology 503 110361 (2020)
https://doi.org/10.1016/j.jtbi.2020.110361

Differential susceptibility to the tracheal mite Acarapis woodi between Apis cerana and Apis mellifera

Yoshiko Sakamoto, Taro Maeda, Mikio Yoshiyama and Jeffery S. Pettis
Apidologie 48 (2) 150 (2017)
https://doi.org/10.1007/s13592-016-0460-8

Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees

Qing Wang, Xinjian Xu, Xiangjie Zhu, et al.
PLOS ONE 11 (5) e0154547 (2016)
https://doi.org/10.1371/journal.pone.0154547

b+WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring

Fiona Edwards-Murphy, Michele Magno, Pádraig M. Whelan, John O’Halloran and Emanuel M. Popovici
Computers and Electronics in Agriculture 124 211 (2016)
https://doi.org/10.1016/j.compag.2016.04.008

Tracheal Mite, Acarapis woodi (Acari: Tarsonemidae), of Honey Bees: Biology, Impact on Honey Bees and Occurrence in Japan

Taro Maeda, Yoshiko Sakamoto, Kimiko Okabe, et al.
Japanese journal of applied entomology and zoology 59 (3) 109 (2015)
https://doi.org/10.1303/jjaez.2015.109

Standard methods for toxicology research in Apis mellifera

Piotr Medrzycki, Hervé Giffard, Pierrick Aupinel, et al.
Journal of Apicultural Research 52 (4) 1 (2013)
https://doi.org/10.3896/IBRA.1.52.4.14

Standard methods for tracheal mite research

Diana Sammataro, Lilia de Guzman, Sherly George, Ron Ochoa and Gard Otis
Journal of Apicultural Research 52 (4) 1 (2013)
https://doi.org/10.3896/IBRA.1.52.4.20

Brood production increases when artificial heating is provided to colonies of stingless bees

Ayrton Vollet-Neto, Cristiano Menezes and Vera Lucia Imperatriz-Fonseca
Journal of Apicultural Research 50 (3) 242 (2011)
https://doi.org/10.3896/IBRA.1.50.3.09

Effect of lodging type on the internal temperature and humidity of colonies of Melipona colimana (Hymenoptera: Meliponini) from a Mexican temperate zone

José Octavio Macías-Macías, José Javier G. Quezada-Euán and José Maria Tapia González
Journal of Apicultural Research 50 (3) 235 (2011)
https://doi.org/10.3896/IBRA.1.50.3.08

Comparative temperature tolerance in stingless bee species from tropical highlands and lowlands of Mexico and implications for their conservation (Hymenoptera: Apidae: Meliponini)

José Octavio Macías-Macías, José Javier G. Quezada-Euán, Francisca Contreras-Escareño, et al.
Apidologie 42 (6) 679 (2011)
https://doi.org/10.1007/s13592-011-0074-0

Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides

Piotr Medrzycki, Fabio Sgolastra, Laura Bortolotti, et al.
Journal of Apicultural Research 49 (1) 52 (2010)
https://doi.org/10.3896/IBRA.1.49.1.07

Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens)

Margaret J. Couvillon, Ginny Fitzpatrick and Anna Dornhaus
Psyche: A Journal of Entomology 2010 1 (2010)
https://doi.org/10.1155/2010/536430

Chemical cues in the host-seeking behaviour of tracheal mites (Acarapis woodi) in honey bees (Apis mellifera mellifera)

John B. Mcmullan, Patrizia d’ettorre and Mark J.F. Brown
Apidologie 41 (5) 568 (2010)
https://doi.org/10.1051/apido/2010004

A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them

Dennis vanEngelsdorp and Marina Doris Meixner
Journal of Invertebrate Pathology 103 S80 (2010)
https://doi.org/10.1016/j.jip.2009.06.011

A qualitative model of mortality in honey bee (Apis mellifera) colonies infested with tracheal mites (Acarapis woodi)

John B. McMullan and Mark J. F. Brown
Experimental and Applied Acarology 47 (3) 225 (2009)
https://doi.org/10.1007/s10493-008-9213-3

Experimental analysis of worker division of labor in bumblebee nest thermoregulation (Bombus huntii, Hymenoptera: Apidae)

Kathryn E. Gardner, Robin L. Foster and Sean O’Donnell
Behavioral Ecology and Sociobiology 61 (5) 783 (2007)
https://doi.org/10.1007/s00265-006-0309-7

Brood-cell size does not influence the susceptibility of honey bees (Apis mellifera) to infestation by tracheal mites (Acarapis woodi)

John B. McMullan and Mark J. F. Brown
Experimental and Applied Acarology 39 (3-4) 273 (2006)
https://doi.org/10.1007/s10493-006-9017-2

The role of autogrooming in the differential susceptibility to tracheal mite (Acarapis woodi) infestation of honeybees (Apis mellifera) held at both normal and reduced temperatures during pupation

John B. McMullan and Mark J.F. Brown
Apidologie 37 (4) 471 (2006)
https://doi.org/10.1051/apido:2006017