Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Allele Frequencies of Genetic Variants Associated with Varroa Drone Brood Resistance (DBR) in Apis mellifera Subspecies across the European Continent

Regis Lefebre, Lina De Smet, Anja Tehel, Robert J. Paxton, Emma Bossuyt, Wim Verbeke, Coby van Dooremalen, Zeynep N. Ulgezen, Trudy van den Bosch, Famke Schaafsma, Dirk-Jan Valkenburg, Raffaele Dall’Olio, Cedric Alaux, Daniel S. Dezmirean, Alexandru I. Giurgiu, Nuno Capela, Sandra Simões, José Paulo Sousa, Martin Bencsik, Adam McVeigh, Michael Thomas Ramsey, Sausan Ahmad, Tarun Kumar, Marc O. Schäfer, Alexis L. Beaurepaire, et al.
Insects 15 (6) 419 (2024)
https://doi.org/10.3390/insects15060419

Interaction of acetamiprid, Varroa destructor, and Nosema ceranae in honey bees

Yuxin Kang, Tong Wu, Bo Han, Sa Yang, Xing Wang, Qiang Wang, Jing Gao and Pingli Dai
Journal of Hazardous Materials 471 134380 (2024)
https://doi.org/10.1016/j.jhazmat.2024.134380

Oxalic Acid Treatment: Short-Term Effects on Enzyme Activities, Vitellogenin Content, and Residual Oxalic Acid Content in House Bees, Apis mellifera L.

Simona Sagona, Elena Tafi, Francesca Coppola, Antonio Nanetti, Chiara Benedetta Boni, Caterina Orlando, Lionella Palego, Laura Betti, Gino Giannaccini and Antonio Felicioli
Insects 15 (6) 409 (2024)
https://doi.org/10.3390/insects15060409

Experimental Ecotoxicology Procedures Interfere with Honey Bee Life History

Victor Desclos le Peley, Stéphane Grateau, Carole Moreau‐Vauzelle, Daniel Raboteau, Colombe Chevallereau, Fabrice Requier, Pierrick Aupinel and Freddie‐Jeanne Richard
Environmental Toxicology and Chemistry 43 (6) 1320 (2024)
https://doi.org/10.1002/etc.5872

ظاهرة انهيار طوائف النحل: الحدوث, الأعراض والمسببات المحتملة

د. الهاشمي علي اغليو
مجلة العلوم والدراسات الإنسانية - كلية الآداب والعلوم – المرج (79) 1 (2024)
https://doi.org/10.37376/jsh.vi79.6598

The mite Varroa destructor lowers the stinging response threshold of honey bees ( Apis mellifera )

Alvaro De la Mora, Nuria Morfin, Laura G. Espinosa-Montaño, Carlos Aurelio Medina-Flores and Ernesto Guzman-Novoa
Journal of Apicultural Research 63 (1) 184 (2024)
https://doi.org/10.1080/00218839.2021.1959754

Genomic characterization, phylogenetic and expression analysis of foraging gene in Apis mellifera

Salim Morammazi, Borhan Shokrollahi and Faiz-ul Hassan
Gene 910 148318 (2024)
https://doi.org/10.1016/j.gene.2024.148318

Interaction of chlorothalonil and Varroa destructor on immature honey bees rearing in vitro

Tong Wu, Jing Gao, Yong Soo Choi, Dong Won Kim, Bo Han, Sa Yang, Ying Lu, Yuxin Kang, Hanchao Du, Qingyun Diao and Pingli Dai
Science of The Total Environment 904 166302 (2023)
https://doi.org/10.1016/j.scitotenv.2023.166302

Behavioural defences against parasites across host social structures

Sebastian Stockmaier, Yuko Ulrich, Gregory F. Albery, Sylvia Cremer and Patricia C. Lopes
Functional Ecology 37 (4) 809 (2023)
https://doi.org/10.1111/1365-2435.14310

Age-related response to mite parasitization and viral infection in the honey bee suggests a trade-off between growth and immunity

Virginia Zanni, Davide Frizzera, Fabio Marroni, Elisa Seffin, Desiderato Annoscia, Francesco Nazzi and Olav Rueppell
PLOS ONE 18 (7) e0288821 (2023)
https://doi.org/10.1371/journal.pone.0288821

Influence of climatic factors and floristic diversity on the foraging activity of Apis mellifera adansonii Latreille in a West African Savannah

Issaka Wendpanga Kanazoe, Issa Nombré, Sambo Ouédraogo, Joseph Issaka Boussim and Nicolas J. Vereecken
African Journal of Ecology 61 (3) 660 (2023)
https://doi.org/10.1111/aje.13159

Influence of landscape on foraging range and homing ability of afrotropical stingless bees

W. Kasiera, S. Kariuki, M. Musonye, K. Krausa and N. Kiatoko
Insectes Sociaux 70 (1) 59 (2023)
https://doi.org/10.1007/s00040-023-00899-3

Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction

Wilnelia Recart, Rover Bernhard, Isabella Ng, Katherine Garcia and Arietta E. Fleming-Davies
Pathogens 12 (2) 347 (2023)
https://doi.org/10.3390/pathogens12020347

Development and assessment of an epidemiologic dashboard for surveillance of Varroa destructor in Ontario apiaries

K.E. Sobkowich, O. Berke, T.M. Bernardo, D.L. Pearl and P. Kozak
Preventive Veterinary Medicine 212 105853 (2023)
https://doi.org/10.1016/j.prevetmed.2023.105853

Salivary Cystatin-L2-like of Varroa destructor Causes Lower Metabolism Activity and Abnormal Development in Apis mellifera Pupae

He Zhou, Xinle Duan, Chaoxia Sun, Hongji Huang, Mei Yang, Shaokang Huang and Jianghong Li
Animals 13 (23) 3660 (2023)
https://doi.org/10.3390/ani13233660

Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role?

Elena Alonso-Prados, Amelia Virginia González-Porto, Carlos García-Villarubia, José Antonio López-Pérez, Silvia Valverde, José Bernal, Raquel Martín-Hernández and Mariano Higes
Insects 13 (4) 371 (2022)
https://doi.org/10.3390/insects13040371

Understanding the Enemy: A Review of the Genetics, Behavior and Chemical Ecology of Varroa destructor, the Parasitic Mite of Apis mellifera

Taylor Reams, Juliana Rangel and Margarita Lopez-Uribe
Journal of Insect Science 22 (1) (2022)
https://doi.org/10.1093/jisesa/ieab101

RFID-tagged amazonian stingless bees confirm that landscape configuration and nest re-establishment time affect homing ability

L. Costa, P. Nunes-Silva, J. S. Galaschi-Teixeira, et al.
Insectes Sociaux 68 (1) 101 (2021)
https://doi.org/10.1007/s00040-020-00802-4

Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies

Cameron J Jack, James D Ellis and Hongmei Li-Byarlay
Journal of Insect Science 21 (5) (2021)
https://doi.org/10.1093/jisesa/ieab058

Reconstruction analysis of honeybee colony collapse disorder modeling

Atanas Z. Atanasov, Slavi G. Georgiev and Lubin G. Vulkov
Optimization and Engineering 22 (4) 2481 (2021)
https://doi.org/10.1007/s11081-021-09678-0

Tropilaelaps mercedesae parasitism changes behavior and gene expression in honey bee workers

Jing Gao, Shilong Ma, Xinling Wang, Yang Yang, Qihua Luo, Xing Wang, Feng Liu, Qiang Wang, Zhongmin Fu, Qingyun Diao, Pingli Dai and Adam G. Dolezal
PLOS Pathogens 17 (7) e1009684 (2021)
https://doi.org/10.1371/journal.ppat.1009684

Honey bees increase social distancing when facing the ectoparasite Varroa destructor

Michelina Pusceddu, Alessandro Cini, Simona Alberti, Emanuele Salaris, Panagiotis Theodorou, Ignazio Floris and Alberto Satta
Science Advances 7 (44) (2021)
https://doi.org/10.1126/sciadv.abj1398

Modelling and Development of Intelligent Systems

Atanas Z. Atanasov, Slavi G. Georgiev and Lubin G. Vulkov
Communications in Computer and Information Science, Modelling and Development of Intelligent Systems 1341 363 (2021)
https://doi.org/10.1007/978-3-030-68527-0_23

Latest Information on the Ecology of the Ectoparasitic Mite Varroa destructor(Mesostigmata: Varroidae)and the Resistance of Its Host, Honey Bees(Hymenoptera: Apidae)

Yoshiko Sakamoto
Japanese Journal of Applied Entomology and Zoology 65 (2) 71 (2021)
https://doi.org/10.1303/jjaez.2021.71

Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from non-natal bees

Kelly Kulhanek, Andrew Garavito and Dennis vanEngelsdorp
Scientific Reports 11 (1) (2021)
https://doi.org/10.1038/s41598-021-86558-8

The pattern of HSP70 gene expression, flight activity and temperature in Apis mellifera meda colonies

Salim Morammazi and Borhan Shokrollahi
Journal of Thermal Biology 91 102647 (2020)
https://doi.org/10.1016/j.jtherbio.2020.102647

Dominant honeybee colony infestation by Varroa destructor (Acari: Varroidae) K haplotype in Japan

Mari H. Ogihara, Mikio Yoshiyama, Nobuo Morimoto and Kiyoshi Kimura
Applied Entomology and Zoology 55 (2) 189 (2020)
https://doi.org/10.1007/s13355-020-00667-w

The Combined Effects of Varroa destructor Parasitism and Exposure to Neonicotinoids Affects Honey Bee (Apis mellifera L.) Memory and Gene Expression

Nuria Morfin, Paul H. Goodwin and Ernesto Guzman-Novoa
Biology 9 (9) 237 (2020)
https://doi.org/10.3390/biology9090237

Varroa destructor Parasitism and Genetic Variability at Honey Bee (Apis mellifera) Drone Congregation Areas and Their Associations With Environmental Variables in Argentina

Alberto Galindo-Cardona, Alejandra C. Scannapieco, Romina Russo, et al.
Frontiers in Ecology and Evolution 8 (2020)
https://doi.org/10.3389/fevo.2020.590345

Corpse removal increases when honey bee colonies experience high Varroa destructor infestation

F. van Langevelde, F. Kiggen, C. van Dooremalen and B. Cornelissen
Insectes Sociaux 67 (4) 507 (2020)
https://doi.org/10.1007/s00040-020-00789-y

Interaction of field realistic doses of clothianidin and Varroa destructor parasitism on adult honey bee (Apis mellifera L.) health and neural gene expression, and antagonistic effects on differentially expressed genes

Nuria Morfin, Paul H. Goodwin, Ernesto Guzman-Novoa and James C. Nieh
PLOS ONE 15 (2) e0229030 (2020)
https://doi.org/10.1371/journal.pone.0229030

Radiofrequency identification (RFID) reveals long-distance flight and homing abilities of the stingless bee Melipona fasciculata

Patrícia Nunes-Silva, Luciano Costa, Alistair John Campbell, et al.
Apidologie 51 (2) 240 (2020)
https://doi.org/10.1007/s13592-019-00706-8

A convenient method for detection of Varroa destructor (Acari: Varroidae) using roasted soybean flour

Mari Horigane Ogihara, Marko Stoic, Nobuo Morimoto, Mikio Yoshiyama and Kiyoshi Kimura
Applied Entomology and Zoology 55 (4) 429 (2020)
https://doi.org/10.1007/s13355-020-00698-3

Comparison of sublethal effects of natural acaricides carvacrol and thymol on honeybees

Gordana Glavan, Sara Novak, Janko Božič and Anita Jemec Kokalj
Pesticide Biochemistry and Physiology 166 104567 (2020)
https://doi.org/10.1016/j.pestbp.2020.104567

Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it?

Alison Scott-Brown, Hauke Koch, Amélie Noël, Yves Le Conte and Fanny Mondet
Emerging Topics in Life Sciences 4 (1) 45 (2020)
https://doi.org/10.1042/ETLS20190125

Varroa destructor infestation impairs the improvement of landing performance in foraging honeybees

Florian T. Muijres, Coby van Dooremalen, Martin Lankheet, et al.
Royal Society Open Science 7 (9) 201222 (2020)
https://doi.org/10.1098/rsos.201222

Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development

Elizabeth M. Walsh, Stephen Sweet, Anthony Knap, Nancy Ing and Juliana Rangel
Behavioral Ecology and Sociobiology 74 (3) (2020)
https://doi.org/10.1007/s00265-020-2810-9

Population abundance of Varroa destructor and its effects on Apis mellifera scutellata colonies in Kenya

Sammy Kiprotich Cheruiyot, Ruth Kahuthia-Gathu, Jenard Patrick Mbugi, Elliud Muli and H. Michael G. Lattorff
Experimental and Applied Acarology 82 (2) 171 (2020)
https://doi.org/10.1007/s10493-020-00548-5

Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors

David Thomas Peck, Thomas Dyer Seeley and James C. Nieh
PLOS ONE 14 (6) e0218392 (2019)
https://doi.org/10.1371/journal.pone.0218392

Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees

Travis L. Dynes, Jennifer A. Berry, Keith S. Delaplane, et al.
PLOS ONE 14 (5) e0216286 (2019)
https://doi.org/10.1371/journal.pone.0216286

Adaptive suicide: is a kin-selected driver of fatal behaviours likely?

Rosalind K. Humphreys and Graeme D. Ruxton
Biology Letters 15 (2) 20180823 (2019)
https://doi.org/10.1098/rsbl.2018.0823

Hazard of a neonicotinoid insecticide on the homing flight of the honeybee depends on climatic conditions and Varroa infestation

Coline Monchanin, Mickaël Henry, Axel Decourtye, et al.
Chemosphere 224 360 (2019)
https://doi.org/10.1016/j.chemosphere.2019.02.129

A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony

Kim Bjerge, Carsten Eie Frigaard, Peter Høgh Mikkelsen, et al.
Computers and Electronics in Agriculture 164 104898 (2019)
https://doi.org/10.1016/j.compag.2019.104898

2D-DIGE proteomic analysis reveals changes in haemolymph proteome of 1-day-old honey bee (Apis mellifera) workers in response to infection with Varroa destructor mites

Mariola Słowińska, Joanna Nynca, Beata Bąk, et al.
Apidologie 50 (5) 632 (2019)
https://doi.org/10.1007/s13592-019-00674-z

High Load of Deformed Wing Virus and Varroa destructor Infestation Are Related to Weakness of Honey Bee Colonies in Southern Spain

Sandra Barroso-Arévalo, Eduardo Fernández-Carrión, Joaquín Goyache, et al.
Frontiers in Microbiology 10 (2019)
https://doi.org/10.3389/fmicb.2019.01331

Netted crop covers reduce honeybee foraging activity and colony strength in a mass flowering crop

Lisa J. Evans, Brian T. Cutting, Mateusz Jochym, Milena A. Janke, Crystal Felman, Sarah Cross, Marine Jacob and Mark Goodwin
Ecology and Evolution 9 (10) 5708 (2019)
https://doi.org/10.1002/ece3.5154

Reproduction of parasitic mites Varroa destructor in original and new honeybee hosts

Zheguang Lin, Yao Qin, Paul Page, Shuai Wang, Li Li, Zhengsheng Wen, Fuliang Hu, Peter Neumann, Huoqing Zheng and Vincent Dietemann
Ecology and Evolution 8 (4) 2135 (2018)
https://doi.org/10.1002/ece3.3802

Honey bee viruses in Serbian colonies of different strength

Dragan Cirkovic, Jevrosima Stevanovic, Uros Glavinic, et al.
PeerJ 6 e5887 (2018)
https://doi.org/10.7717/peerj.5887

Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

Matthew Betti, Josh LeClair, Lindi Wahl and Mair Zamir
Insects 8 (1) 31 (2017)
https://doi.org/10.3390/insects8010031

Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance

Alexis L. Beaurepaire, Klemens J. Krieger and Robin F.A. Moritz
Infection, Genetics and Evolution 50 49 (2017)
https://doi.org/10.1016/j.meegid.2017.02.011

Population Growth of Varroa destructor (Acari: Varroidae) in Colonies of Russian and Unselected Honey Bee (Hymenoptera: Apidae) Stocks as Related to Numbers of Foragers With Mites

Gloria DeGrandi-Hoffman, Fabiana Ahumada, Robert Danka, et al.
Journal of Economic Entomology 110 (3) 809 (2017)
https://doi.org/10.1093/jee/tox069

Effects of parasites and pathogens on bee cognition

TAMARA GÓMEZ‐MORACHO, PHILIPP HEEB and MATHIEU LIHOREAU
Ecological Entomology 42 (S1) 51 (2017)
https://doi.org/10.1111/een.12434

Decrease of memory retention in a parasitic wasp: an effect of host manipulation by Wolbachia?

Hossein Kishani Farahani, Ahmad Ashouri, Seyed Hossein Goldansaz, Martin S. Shapiro, Jean‐Sebastien Pierre and Joan van Baaren
Insect Science 24 (4) 569 (2017)
https://doi.org/10.1111/1744-7917.12348

Differential Gene Expression Associated with Honey Bee Grooming Behavior in Response to Varroa Mites

Mollah Md. Hamiduzzaman, Berna Emsen, Greg J. Hunt, et al.
Behavior Genetics 47 (3) 335 (2017)
https://doi.org/10.1007/s10519-017-9834-6

Distance between honey bee Apis mellifera colonies regulates populations of Varroa destructor at a landscape scale

Maxcy P. Nolan and Keith S. Delaplane
Apidologie 48 (1) 8 (2017)
https://doi.org/10.1007/s13592-016-0443-9

Comparative Flight Activities and Pathogen Load of Two Stocks of Honey Bees Reared in Gamma-Irradiated Combs

Lilia De Guzman, Amanda Frake and Michael Simone-Finstrom
Insects 8 (4) 127 (2017)
https://doi.org/10.3390/insects8040127

Should I stay or should I go: honeybee drifting behaviour as a function of parasitism

Célia Bordier, Maryline Pioz, Didier Crauser, Yves Le Conte and Cédric Alaux
Apidologie 48 (3) 286 (2017)
https://doi.org/10.1007/s13592-016-0475-1

Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera)

Travis L. Dynes, Jacobus C. De Roode, Justine I. Lyons, et al.
Apidologie 48 (1) 93 (2017)
https://doi.org/10.1007/s13592-016-0453-7

Increased Risk Proneness or Social Withdrawal? The Effects of Shortened Life Expectancy on the Expression of Rescue Behavior in Workers of the ant Formica cinerea (Hymenoptera: Formicidae)

Krzysztof Miler, Beata Symonowicz and Ewa J. Godzińska
Journal of Insect Behavior 30 (6) 632 (2017)
https://doi.org/10.1007/s10905-017-9647-8

Do managed bees drive parasite spread and emergence in wild bees?

Peter Graystock, Edward J. Blane, Quinn S. McFrederick, Dave Goulson and William O.H. Hughes
International Journal for Parasitology: Parasites and Wildlife 5 (1) 64 (2016)
https://doi.org/10.1016/j.ijppaw.2015.10.001

Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L)

Nadège Forfert, Myrsini E. Natsopoulou, Robert J. Paxton and Robin F.A. Moritz
Infection, Genetics and Evolution 44 549 (2016)
https://doi.org/10.1016/j.meegid.2016.07.017

A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors

EFSA Supporting Publications 13 (7) (2016)
https://doi.org/10.2903/sp.efsa.2016.EN-1069

Varroa treatment with bromfenvinphos markedly suppresses honeybee biochemical defence levels

Aneta Strachecka, Krzysztof Olszewski and Jerzy Paleolog
Entomologia Experimentalis et Applicata 160 (1) 57 (2016)
https://doi.org/10.1111/eea.12451

Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory

Lise R. Charbonneau, Neil Kirk Hillier, Richard E. L. Rogers, Geoffrey R. Williams and Dave Shutler
Scientific Reports 6 (1) (2016)
https://doi.org/10.1038/srep22626

Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor

URSULA STRAUSS, VINCENT DIETEMANN, HANNELIE HUMAN, ROBIN M. CREWE and CHRISTIAN W. W. PIRK
Parasitology 143 (3) 374 (2016)
https://doi.org/10.1017/S0031182015001754

Disease dynamics of honeybees with Varroa destructor as parasite and virus vector

Yun Kang, Krystal Blanco, Talia Davis, Ying Wang and Gloria DeGrandi-Hoffman
Mathematical Biosciences 275 71 (2016)
https://doi.org/10.1016/j.mbs.2016.02.012

Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites

Gloria DeGrandi-Hoffman, Fabiana Ahumada, Victor Zazueta, et al.
Experimental and Applied Acarology 69 (1) 21 (2016)
https://doi.org/10.1007/s10493-016-0022-9

Immune responses of honeybees and their fitness costs as compared to bumblebees

Ulrike Riessberger-Gallé, Javier Hernández López, Wolfgang Schuehly, et al.
Apidologie 46 (2) 238 (2015)
https://doi.org/10.1007/s13592-014-0318-x

Honey Bee Workers That Are Pollen Stressed as Larvae Become Poor Foragers and Waggle Dancers as Adults

Hailey N. Scofield, Heather R. Mattila and Olav Rueppell
PLOS ONE 10 (4) e0121731 (2015)
https://doi.org/10.1371/journal.pone.0121731

Mite infestation during development alters the in-hive behaviour of adult honeybees

Desiderato Annoscia, Fabio Del Piccolo, Francesca Covre and Francesco Nazzi
Apidologie 46 (3) 306 (2015)
https://doi.org/10.1007/s13592-014-0323-0

A new detection method for a newly revealed mechanism of pyrethroid resistance development in Varroa destructor

Aneta Strachecka, Grzegorz Borsuk, Krzysztof Olszewski and Jerzy Paleolog
Parasitology Research 114 (11) 3999 (2015)
https://doi.org/10.1007/s00436-015-4627-4

Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees

Lisa J. Blanken, Frank van Langevelde and Coby van Dooremalen
Proceedings of the Royal Society B: Biological Sciences 282 (1820) 20151738 (2015)
https://doi.org/10.1098/rspb.2015.1738

Experimental Treatment with the Natural Water Acidifier Provigoro<sup>&reg;</sup> for Nosema spp. Control: Preliminary Results

Antonios E. Tsagkarakis, Chrysostomos Rokkas and Ioannis Katsimpoulas
Advances in Entomology 03 (03) 83 (2015)
https://doi.org/10.4236/ae.2015.33009

Parasites and Pathogens of the Honeybee (Apis mellifera) and Their Influence on Inter-Colonial Transmission

Nadège Forfert, Myrsini E. Natsopoulou, Eva Frey, et al.
PLOS ONE 10 (10) e0140337 (2015)
https://doi.org/10.1371/journal.pone.0140337

The influence of Nosema (Microspora: Nosematidae) infection on honey bee (Hymenoptera: Apidae) defense against Varroa destructor (Mesostigmata: Varroidae)

Rassol Bahreini and Robert W. Currie
Journal of Invertebrate Pathology 132 57 (2015)
https://doi.org/10.1016/j.jip.2015.07.019

Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor

Thomas D. Seeley and Michael L. Smith
Apidologie 46 (6) 716 (2015)
https://doi.org/10.1007/s13592-015-0361-2

Occurrence of parasites and pathogens in honey bee colonies used in a European genotype-environment interactions experiment

Marina Doris Meixner, Roy Mathew Francis, Anna Gajda, et al.
Journal of Apicultural Research 53 (2) 215 (2014)
https://doi.org/10.3896/IBRA.1.53.2.04

Population growth of Varroa destructor (Acari: Varroidae) in commercial honey bee colonies treated with beta plant acids

Gloria DeGrandi-Hoffman, Fabiana Ahumada, Robert Curry, Gene Probasco and Lloyd Schantz
Experimental and Applied Acarology 64 (2) 171 (2014)
https://doi.org/10.1007/s10493-014-9821-z

Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees

Gennaro Di Prisco, Valeria Cavaliere, Desiderato Annoscia, Paola Varricchio, Emilio Caprio, Francesco Nazzi, Giuseppe Gargiulo and Francesco Pennacchio
Proceedings of the National Academy of Sciences 110 (46) 18466 (2013)
https://doi.org/10.1073/pnas.1314923110

Standard methods for behavioural studies of Apis mellifera

Ricarda Scheiner, Charles I Abramson, Robert Brodschneider, et al.
Journal of Apicultural Research 52 (4) 1 (2013)
https://doi.org/10.3896/IBRA.1.52.4.04

Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)

Jennifer A. Berry, W. Michael Hood, Stéphane Pietravalle, Keith S. Delaplane and Guy Smagghe
PLoS ONE 8 (10) e76536 (2013)
https://doi.org/10.1371/journal.pone.0076536

Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

Zhiguo Li, Yanping Chen, Shaowu Zhang, et al.
PLoS ONE 8 (10) e77354 (2013)
https://doi.org/10.1371/journal.pone.0077354

Proteolysis on the body surface of pyrethroid-sensitive and resistant Varroa destructor

Aneta Strachecka, Grzegorz Borsuk, Krzysztof Olszewski, Jerzy Paleolog and Zbigniew Lipiński
Acta Parasitologica 58 (1) 64 (2013)
https://doi.org/10.2478/s11686-013-0109-y