Free access
Issue
Apidologie
Volume 31, Number 2, March-April 2000
Taxonomy and Evolutionary biology of the Honeybees
Page(s) 235 - 248
DOI http://dx.doi.org/10.1051/apido:2000119

References

1
Alcock J., Eickwort G.V., Eickwort K.R., The reproductive behavior of Anthicium maculoum (Hymenoptera: Megachilidae) and the evolutionary significance of multiple copulations by females, Behav. Ecol. Sociobiol. 2 (1977) 385-396.
2
Alcock J., Barrows E.M., Gordh G., Hubbard L.J., Kierkendall L., Pyle D.W., Ponder T.L., Zalon F.G., The ecology and evolution of male reproductive behavior in the bees and wasps, Zool. J. Linn. Soc. 64 (1978) 293-336.
3
Alexander B.A., Phylogenetic analysis of the genus Apis (Hymenoptera: Apidae), Ann. Entomol. Soc. Am. 84 (1991) 137-149.
4
Baer B., Schmid-Hempel P., Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee, Nature 397 (1999) 151-154.
5
Boomsma J.J., Ratnieks F.L.W., Paternity in eusocial Hymenoptera, Phil. Trans. R. Soc. Lond. 351 (1996) 947-975.
6
Brown J.L., A theory of mate choice based on heterozygosity, Behav. Ecol. 8 (1997) 60-65.
7
Calderone N.W., Page R.E., Genotypic variability in age polyethism and task specialization in the honey bee, Apis mellifera (Hymenoptera: Apidae), Behav. Ecol. Sociobiol. 22 (1988) 17-25.
8
Calderone N.W., Page R.E., Evolutionary genetics of division of labor in colonies of the honey bee (Apis mellifera), Am. Nat. 138 (1991) 69-92.
9
Calderone N.W., Page R.E., Temporal polyethism and behavioural canalization in the honey bee, Apis mellifera, Anim. Behav. 51 (1996) 631-643.
10
Calderone N.W., Robinson G.E., Page R.E., Genetic structure and division of labor in honey bee societies, Experientia 45 (1989) 765-767.
11
Cole B.J., Multiple mating and the evolution of social behavior in the Hymenoptera, Behav. Ecol. Sociobiol. 12 (1983) 191-201.
12
Crozier R.H., Page R.E., On being the right size: male contributions and multiple mating in the social hymenoptera, Behav. Ecol. Sociobiol. 18 (1985) 105-115.
13
Crozier R.H., Pamilo P., Evolution of social insect colonies. Sex allocation and kin selection, Oxford Univ. Press, Oxford, UK, 1996.
14
Dreller C., Fondrk M.K., Page R.E., Genetic variability affects the behavior of foragers in a feral honeybee colony, Naturwissenschaften 82 (1995) 243-245.
15
Ebert D., Hamilton W.D., Sex against virulence: the coevolution of parasitic diseases, Trends Ecol. Evol. 11 (1996) 79-82.
16
Estoup A., Scholl A., Pouvreau A., Solignac M., Monandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites, Mol. Ecol. 4 (1995) 89-93.
17
Fewell J.H., Page R.E., Genotypic variation in foraging responses to environmental stimuli by honey bees, Apis mellifera, Experientia 49 (1993) 1106-1112.
18
Fjerdingstad E.J., Boomsma J.J., Multiple mating increases the sperm stores of Atta colombica leafcutter ant queens, Behav. Ecol. Sociobiol. 42 (1998) 257-261.
19
Frumhoff P.C., Baker J., A genetic component to division of labour within honey bee colonies, Nature 333 (1988) 358-361.
20
Fuchs S., Schade V., Lower performance in honeybee colonies of uniform paternity, Apidologie 25 (1994) 155-169.
21
Fuchs S., Moritz R.F.A., Evolution of extreme polyandry in the honeybee Apis mellifera L., Behav. Ecol. Sociobiol. 39 (1998) 269-275.
22
Gadagkar R., The haplodiploidy threshold and social evolution, Curr. Sci. 59 (1990) 374-376.
23
Getz W.M., Brückner D., Parisian T.R., Kin structure and the swarming behavior of the honey bee Apis mellifera, Behav. Ecol. Sociobiol. 10 (1982) 265-270.
24
Guzman-Novoa E., Page R.E., Backcrossing Africanized honey bee queens to European drones reduces colony defensive behavior, Ann. Entomol. Soc. Am. 86 (1993) 352-355.
25
Guzman-Novoa E., Page R.E., Gary N.E., Behavioral and life history components of division of labor in honey bees (Apis mellifera L.), Behav. Ecol. Sociobiol. 34 (1994) 409-417.
26
Haberl M., Tautz D., Paternity and maternity frequencies in Apis mellifera sicula, Insectes Soc. 46 (1999) 137-145.
27
Hamilton W.D., Kinship, recognition, disease, and intelligence: constraints of social evolution, in: Ito Y., Brown J.L., Kikkawa J. (Eds.), Animal Societies: Theories and Facts, Japan Sci. Soc. Press, Tokyo, 1987, pp. 81-102.
28
Harbo J.R., The value of single drone inseminations in selective breeding of honey bees, in: Hoopingarner R., Conner L. (Eds.), Apiculture for the 21st Century, Wicwas Press, Cheshire, CT, 1999, pp. 1-5.
29
Harvey P.H., Pagel M.D., The Comparative Method in Evolutionary Biology, Oxford Univ. Press, Oxford, 1991.
30
Keller L., Parasites, worker polymorphism, and queen number in social insects, Am. Nat. 145 (1995) 842-847.
31
Keller L., Reeve H.K., Genetic variability, queen number, and polyandry in social Hymenoptera, Evolution 48 (1994) 694-704.
32
Keller L., Reeve H.K., Why do females mate with multiple males? The sexually selected sperm hypothesis, Adv. Stud. Behav. 24 (1995) 291-315.
33
Koeniger N., Koeniger G., An evolutionary approach to mating behaviour and drone copulatory organs in Apis, Apidologie 22 (1991) 581-590.
34
Kolmes S.A., Winston M.L., Fergusson L.A., The division of labor among worker honey bees (Hymenoptera: Apidae): the effects of multiple patrilines, J. Kans. Entomol. Soc. 62 (1989) 80-95.
35
Kraus B., Page R.E., Parasites, pathogens and polyandry in social insects, Am. Nat. 151 (1998) 383-391.
36
Liersch S., Schmid-Hempel P., Genetic variation within social insect colonies reduces parasite load, Proc. R. Soc. Lond. Ser. B 265 (1998) 221-225.
37
Lively C.M., Evidence from a New Zealand snail for maintenance of sex by parasitism, Nature 328 (1987) 519-521.
38
Maynard Smith J., What use is sex? J. Theor. Biol. 30 (1971) 319-355.
39
Michener C.D., The Social Behaviour of the Bees, Harvard Univ. Press, Cambridge, MA, 1974.
40
Moritz R.F.A., The effects of multiple mating on the worker-queen conflict in Apis mellifera, Behav. Ecol. Sociobiol. 16 (1985) 375-377.
41
Moritz R.F.A., Hillesheim E., Genotypic intragroup variance and hoarding behavior in honeybees (Apis mellifera L.), Apidologie 20 (1989) 383-390.
42
Moritz R.F.A., Kryger P., Koeniger N., Estoup A., Tingek S., High degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability, Behav. Ecol. Sociobiol. 37 (1995) 357-363.
43
Neumann P., Moritz R.F.A., Testing hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.) with single locus DNA fingerprinting, Proc. XX Int. Congr. Entomology, Florence, Italy, 1996, p. 438.
44
Oldroyd B.P., Moran C., Heritability of worker characters in the honeybee (Apis mellifera), Aust. J. Biol. Sci. 36 (1983) 323-332.
45
Oldroyd B.P., Rinderer T.E., Buco S.M., Intracolonial variance in honey bee foraging behaviour: the effects of sucrose concentration, J. Apic. Res. 30 (1991) 137-145.
46
Oldroyd B.P., Rinderer T.E., Buco S.M., Intra-colonial foraging specialism by honey bees (Apis mellifera) (Hymenoptera: Apidae), Behav. Ecol. Sociobiol. 30 (1992) 291-295.
47
Oldroyd B.P., Rinderer T.E., Harbo J.R., Buco S.M., Effects of intracolonial genetic diversity on honey bee (Hymenoptera: Apidae) colony performance, Ann. Entomol. Soc. Am. 85 (1992) 335-343.
48
Oldroyd B.P., Rinderer T.E., Buco S.M., Beaman L.D., Genetic variance in honey bees for preferred foraging distance, Anim. Behav. 45 (1993) 323-332.
49
Oldroyd B.P., Sylvester H.A., Wongsiri S., Rinderer T.E., Task specialization in a wild bee, Apis florea (Hymenoptera: Apidae), revealed by RFLP banding, Behav. Ecol. Sociobiol. 34 (1994) 25-30.
50
Oldroyd B.P., Smolenski A.J., Cornuet J.-M., Wongsiri S., Estoup A., Rinderer T. et al., Levels of polyandry and intracolonial genetic relationships in Apis florea, Behav. Ecol. Sociobiol. 37 (1995) 329-335.
51
Oldroyd B.P., Smolenski A.J., Cornuet J.-M., Wongsiri S., Estoup A., Rinderer T.E. et al., Crozier R.H., Levels of polyandry and intracolonial genetic relationships in Apis dorsata (Hymenoptera: Apidae), Ann. Entomol. Soc. Am. 89 (1996) 276-283.
52
Oldroyd B.P., Clifton M.J., Wongsiri S., Rinderer T.E., Sylvester H.A., Crozier R.H., Polyandry in the genus Apis, particularly Apis andreniformis, Behav. Ecol. Sociobiol. 40 (1997) 17-26.
53
Oldroyd B.P., Clifton M.J., Parker K., Wongsiri S., Rinderer T.E., Crozier R.H., Evolution of mating behavior in the genus Apis and an estimate of mating frequency in A. cerana (Hymenoptera: Apidae), Ann. Entomol. Soc. Am. 91 (1998) 700-709.
54
Page R.E., The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.), Genetics 96 (1980) 263-273.
55
Page R.E., Sperm utilization in social insects, Annu. Rev. Entomol. 31 (1986) 297-320.
56
Page R.E., Marks R.W., The population genetics of sex determination in honey bees: random mating in closed populations, Heredity 48 (1982) 263-270.
57
Page R.E., Metcalf R.A., Multiple mating, sperm utilization, and social evolution, Am. Nat. 119 (1982) 263-281.
58
Page R.E., Robinson G.E., The genetics of division of labour in honey bee colonies, Adv. Insect Physiol. 23 (1991) 117-169.
59
Page R.E., Mitchell S.D., Self-organization and the evolution of division of labor, Apidologie 29 (1998) 171-190.
60
Page R.E., Robinson G.E., Calderone N.E., Rothenbuhler W.C., Genetic structure, division of labor, and the evolution of insect societies, in: Breed M.D., Page R.E., Jr. (Eds.), The Genetics of Social Evolution, Westview Press, Boulder, CO, 1989, pp. 15-30.
61
Page R.E.J., Robinson G.E., Fondrk M.K., Nasr M.E., Effects of worker genotypic diversity on honey bee colony development and behavior (Apis mellifera), Behav. Ecol. Sociobiol. 36 (1995) 387-396.
62
Page R.E., Erber J., Fondrk M.K., The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.), J. Comp. Physiol. A 182 (1998) 489-500.
63
Pamilo P., Evolution of colony characteristics in social insects. I. Sex allocation, Am. Nat. 137 (1991) 83-107.
64
Queller D.C., Worker control of sex ratio and selection for extreme multiple mating by queens, Am. Nat. 142 (1993) 346-351.
65
Ratnieks F.L.W., The evolution of polyandry by queens in social hymenoptera: the significance of the timing of removal of diploid males, Behav. Ecol. Sociobiol. 28 (1990) 343-348.
66
Ratnieks F.L., Boomsma J.J., Facultative sex allocation by workers and the evolution of polyandry by queens in social Hymenoptera, Am. Nat. 145 (1995) 969-993.
67
Rinderer T.E., Oldroyd B.P., Wongsiri S., Potichot S., Sheppard W.S., Buchmann S., Time of drone flight in four bee species in south-eastern Thailand, J. Apic. Res. 32 (1993) 27-33.
68
Rinderer T.E., Stelzer J.A., Oldroyd B.P., Tingek S., Levels of polyandry and intracolonial genetic relationships in Apis koschevnikovi, J. Apic. Res. 37 (1998) 281-287.
69
Robinson G., Regulation of division of labor in insect colonies, Annu. Rev. Entomol. 37 (1992) 637-665.
70
Robinson G.E., Page R.E., Genetic determination of guarding and undertaking in honey-bee colonies, Nature 333 (1988) 356-358.
71
Robinson G.E., Page R.E., Genetic determination of nectar foraging, pollen foraging and nest-site scouting in honey bee colonies, Behav. Ecol. Sociobiol. 24 (1989) 317-323.
72
Robinson G.E., Page R.E., Genetic basis for division of labor in an insect society, in: Breed M.D., Page R.E., Jr. (Eds.), The Genetics of Social Evolution, .Westview Press, Boulder, CO, 1989, pp. 61-68.
73
Robinson G.E., Fahrbach S.E., Winston M.L., Insect societies and the molecular biology of social behavior, BioEssays 19 (1997) 1099-1107.
74
Robinson G.E., Huang Z.-Y., Colony integration in honey bees: genetic, endocrine and social control of division of labour, Apidologie 29 (1998) 159-170.
75
Robinson G.E., Page R.E., Arensen N., Genotypic differences in brood rearing in honey bee colonies: context specific?, Behav. Ecol. Sociobiol. 34 (1994) 125-137.
76
Rowell G.A., Taylor O.R., Locke S.J., Variation in drone mating flight times among commercial honey bee stocks, Apidologie 17 (1986) 137-158.
77
Ruttner F., Biogeography and Taxonomy of Honeybees, Springer-Verlag, Berlin, 1988.
78
Schmid-Hempel P., Infection and colony viability in social insects, Phil. Trans. R. Soc. Lond. B 346 (1994) 313-320.
79
Schmid-Hempel P., Parasites and social insects, Apidologie 26 (1995) 255-271.
80
Schmid-Hempel P., Parasites in Social Insects, Princeton Univ. Press, Princeton, NJ, 1998.
81
Schmid-Hempel P., Crozier R.H., Polyandry versus polygyny versus parasites, Phil. Trans. R. Soc. Lond. B 354 (1999) 507-515.
82
Shaskolsky D.V., Polyandry - a defending factor of the colony against a great number of lethal eggs, in: Proc. Apimondia Symp. Bee Biology, Moscow, 1976, pp. 67-71.
83
Sherman P.W., Seeley T.D., Reeve H.K., Parasites, pathogens and polyandry in social hymenoptera, Am. Nat. 131 (1988) 602-610.
84
Shykoff J.A., Schmid-Hempel P., Genetic relatedness and eusociality: parasite-mediated selection on the genetic composition of groups, Behav. Ecol. Sociobiol. 28 (1991) 371-376.
85
Shykoff J.A., Schmid-Hempel P., Parasites and the advantage of genetic variability within social insect colonies, Proc. R. Soc. Lond. Ser. B 243 (1991) 55-58.
86
Starr C.K., Sperm competition, kinship, and sociality in the aculate Hymenoptera, in: Smith R.L. (Ed.), Sperm Competition and the Evolution of Animal Mating Systems, Academic Press, Orlando, FL, 1984, pp. 427-464.
87
Thornhill R., Alcock J., The Evolution of Insect Mating Systems, Harvard Univ. Press, Cambridge, MA, 1983.
88
Trivers R.L., Hare H., Haplodiploidy and the evolution of the social insects, Science 191 (1976) 249-263.
89
Underwood B.A., Time of drone flight in Apis laboriosa Smith in Nepal, Apidologie 21 (1990) 501-504.
90
West-Eberhard M.J., The evolution of social behavior by kin selection, Quart. Rev. Biol. 50 (1975) 1-33.
91
Woyciechowski M., Lomnicki A., Multiple mating of queens and the sterility of workers among eusocial Hymenoptera, J. Theor. Biol. 128 (1987) 317-327.
92
Woyciechowski M., Krol E., Figurny E., Stachowicz M., Tracz M., Genetic diversity of workers and infection by the parasite Nosema apis in honey bee colonies (Apis mellifera), in: proc. 12th Congr. IUSSI, Paris, 1994, p. 347.
93
Woyke J., What happens to diploid drone larvae in a honeybee colony? J. Apic. Res. 2 (1963) 73-75.
94
Woyke J., Population genetic studies on sex alleles in the honey bee using the example of the Kangaroo Island bee sanctury, J. Apoc. Res. 15 (1976) 105-123.
95
Woyke J., Effect of sex allele homo-heterozygosity on honeybee colony populations and on their honey production. J. Apic. Res. 19 (1980) 51-63.


Abstract

Copyright INRA/DIB/AGIB/EDP Sciences