Free Access
Issue
Apidologie
Volume 41, Number 1, January-February 2010
Page(s) 29 - 37
DOI https://doi.org/10.1051/apido/2009040
Published online 15 September 2009
  • Behrends A., Scheiner R., Baker N., Amdam G.V. (2007) Cognitive aging is linked to social role in honey bees (Apis mellifera), Exp. Gerontol. 42, 1146–1153 [CrossRef] [PubMed] [Google Scholar]
  • Bhagavan S., Benatar S., Cobey S., Smith B.H. (1994) Effect of genotype but not of age or caste on olfactory learning performance in the honey bee, Apis mellifera, Anim. Behav. 48, 1357–1369 [CrossRef] [Google Scholar]
  • Bonabeau E., Theraulaz G., Deneuburg J.L. (1996) Quantitative study of the fixed threshold model for the regulaton of division of labour in insect societies, Proc. R. Soc. London B 263, 1565–1569 [CrossRef] [Google Scholar]
  • Bonabeau E., Theraulaz G., Deneuburg J.L. (1998) Fixed response thresholds and the regulation of division of labor in insect societies, Bull. Math. Biol. 60, 753–807 [CrossRef] [Google Scholar]
  • Brandes C. (1991) Genetic differences in learning behavior in honeybees (Apis mellifera capensis), Behav. Genet. 21, 271–294 [CrossRef] [PubMed] [Google Scholar]
  • Brandes C., Menzel R. (1990) Common mechanisms in proboscis extension conditioning and visual learning revealed by genetic selection in honeybees (Apis mellifera), J. Comp. Physiol. A 166, 545–552 [Google Scholar]
  • Brandes C., Frisch B., Menzel R. (1988) Time-course of memory formation differs in honey bee lines selected for good and poor learning, Anim. Behav. 36, 981–985 [CrossRef] [Google Scholar]
  • Chandra S.B.C., Hosler J., Smith B.H. (2000) Heritable variation for latent inhibition and its correlation to reversal learning in the honeybee, Apis mellifera, J. Comp. Psychol. 114, 86–97 [CrossRef] [PubMed] [Google Scholar]
  • Chandra S.B.C., Hunt G.J., Cobey S., Smith B.H. (2001) Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera), Behav. Genet. 31, 275–285 [CrossRef] [PubMed] [Google Scholar]
  • Chen C., Tonegawa S. (1997) Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning and memory in the mammalian brain, Annu. Rev. Neurosci. 20, 157–184 [CrossRef] [PubMed] [Google Scholar]
  • Crozier R.H. (1970) Coefficients of relationship and the identity of genes by descent in the Hymenoptera, Am. Nat. 104, 216–227 [CrossRef] [Google Scholar]
  • Dubnau J., Tully T. (1998) Gene discovery in Drosophila: New insights for learning and memory, Annu. Rev. Neurosci. 21, 407–444 [CrossRef] [PubMed] [Google Scholar]
  • Erber J., Hoorman, J., Scheiner R. (2006) Phototactic behaviour correlates with gustatory responsiveness in honey bees (Apis mellifera L.), Behav. Brain Res. 174, 174–180 [CrossRef] [PubMed] [Google Scholar]
  • Estoup A., Solignac M., Cornuet J.M. (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies, Proc. R. Soc. London B 258, 1–7 [CrossRef] [Google Scholar]
  • Ferguson H.J., Cobey S., Smith B.H. (2001) Sensitivity to a change in reward is heritable in the honeybee, Apis mellifera, Anim. Behav. 61, 527–534 [CrossRef] [Google Scholar]
  • Franck P., Coussy H., Le Comte Y., Solignac M., Garnery L., Cornuet J.-M. (1999) Microsatellite analysis of sperm admixture in honey bee, Insect Mol. Biol. 8, 419–421. [CrossRef] [PubMed] [Google Scholar]
  • Fuchs S., Moritz R.F.A. (1998) Evolution of extreme polyandry in the honeybee Apis mellifera L., Behav. Ecol. Sociobiol. 9, 269–275 [Google Scholar]
  • Fuchs S., Schade V. (1994) Lower performance in honeybee colonies of uniform paternity, Apidologie 25, 155–168 [CrossRef] [EDP Sciences] [Google Scholar]
  • Garnery L., Solignac M., Celebrano G., Cornuet J.-M. (1993) A simple test using restricted PCR-amplified mitochondrial DNA to study genetic structure of Apis mellifera L., Experientia 49, 1016–1021. [CrossRef] [Google Scholar]
  • Gary N.E. (1963) Observations of mating behavior in the honeybee, J. Apic. Res. 2, 3–9 [Google Scholar]
  • Giurfa M. (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well, J. Comp. Physiol. A 193, 801–824 [CrossRef] [Google Scholar]
  • Hellmich R.L., Kulincevic J.M., Rothenbuhler W.C. (1985) Selection for high and low pollen-hoarding honey bees, J. Hered. 76, 155–158 [Google Scholar]
  • Hunt G.J., Amdam G.V., Schipalius D., Emore C., Sardesai N., Williams C.E., Rueppell O., Guzman-Novoa E., Arechavaleta-Velasco M., Chandra S., Fondrk K., Beye M., Page RE. (2007) Behavioral genomics of honeybee foraging and nest defense, Naturwissenschaften 94, 247–267. [CrossRef] [PubMed] [Google Scholar]
  • Hunt G.J., Page R.E., Fondrk M.K., Dullum C.J. (1995) Major quantitative trait loci affecting honey bee foraging behavior, Genetics 141, 1537–1545 [PubMed] [Google Scholar]
  • Jones J.C., Myerscough M.R., Grahan S., Oldroyd B.P. (2004) Honey bee nest thermoregulation: diversity promotes stability, Science 305, 402–404 [CrossRef] [PubMed] [Google Scholar]
  • Kuwabara M. (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica, J. Fac. Sci. Hokkaido Univ. Zool. 13, 458–464 [Google Scholar]
  • Latshaw J., Smith B.H. (2005) Heritable variation in learning performance affects foraging preferences in the honey bee (Apis mellifera), Behav. Ecol. Sociobiol. 58, 200–207 [CrossRef] [Google Scholar]
  • Menzel R., Müller U. (1996) Learning and memory in honeybees: From behavior to neural substrates, Rev. Neurosci. 19, 379–404 [CrossRef] [PubMed] [Google Scholar]
  • Miller R.G. (1981) Simultaneous statistical inference, New York: Springer, pp. 6–8. [Google Scholar]
  • Page R.E. (1986) Sperm utilization in social insects, Annu. Rev. Entomol. 31, 297–320 [CrossRef] [Google Scholar]
  • Page R.E., Fondrk M.K. (1995) The effects of colony-level selection on the social organization of honey bee (Apis mellifera L.) colonies: colony-level components of pollen hoarding, Behav. Ecol. Sociobiol. 36, 135–144 [CrossRef] [Google Scholar]
  • Page R.E., Erber J., Fondrk M.K. (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.), J. Comp. Physiol. A 182, 489–500 [CrossRef] [PubMed] [Google Scholar]
  • Page R.E., Robinson G.E., Fondrk M.K., Nasr M.E. (1995) Effects of genotypic diversity on honey bee colony development and behaviour (Apis mellifera L.), Behav. Ecol. Sociobiol. 36, 387–396 [CrossRef] [Google Scholar]
  • Palmer K.A., Oldroyd B.P. (2000) Evolution of multiple mating in the genus Apis, Apidologie 31, 235–248 [CrossRef] [EDP Sciences] [Google Scholar]
  • Pankiw T. (2003) Directional change in a suite of foraging behaviors in tropical and temperate evolved honey bees (Apis mellifera L.), Behav. Ecol. Sociobiol. 54, 458–464 [CrossRef] [Google Scholar]
  • Roussel E., Carcaud J., Sandoz J.-C., Giurfa M. (2009) Reappraising social insect behaviour through aversive responsiveness and learning, PLOS One 4, e4197. doi:10.1371/journal.pone.0004197. [Google Scholar]
  • Rueppell O., Pankiw T., Page R.E. (2004) Pleiotropy, epistasis and new QTL: The genetic architecture of honey bee foraging behaviour, J. Hered. 95, 481–491 [CrossRef] [PubMed] [Google Scholar]
  • Scheiner R., Amdam G.V. (2009) Impaired tactile learning is related to social role in honey bees, J. Exp. Biol. 212, 994–1002 [CrossRef] [PubMed] [Google Scholar]
  • Scheiner R., Barnert M., Erber J. (2003) Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees, Apidologie 34, 67–72 [CrossRef] [EDP Sciences] [Google Scholar]
  • Scheiner R., Erber J., Page R.E. (1999) Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.), J. Comp. Physiol. A, 185, 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Scheiner R., Kuritz-Kaiser A., Menzel R., Erber J. (2005) Sensory responsiveness and the effects of equal subjective rewards on tactile learning and memory of honeybees, Learn. Memory 12, 626–635 [CrossRef] [Google Scholar]
  • Scheiner R., Page R.E., Erber J. (2001) Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains, Behav. Brain Res. 120, 67–73 [CrossRef] [PubMed] [Google Scholar]
  • Scheiner R., Page R.E., Erber J. (2001) The effects of genotype, foraging role, and sucrose responsiveness on the tactile learning performance of honey bees (Apis mellifera L.), Neurobiol. Learn. Memory 76, 138–150 [CrossRef] [PubMed] [Google Scholar]
  • Scheiner R., Weiß A., Malun D., Erber J. (2001) Learning in honey bees with brain lesions: how partial mushroom-body ablations affect sucroseresponsiveness and tactile antennal learning, Anim. Cogn. 3, 227–235 [CrossRef] [Google Scholar]
  • Scheiner R., Page R.E., Erber J. (2004) Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera), Apidologie 35, 133–142 [CrossRef] [EDP Sciences] [Google Scholar]
  • Scheiner R., Sokolowski M.B., Erber J. (2004) Activity of cGMP-dependent protein kinase (PKG) affects sucrose responsiveness and habituation in Drosophila melanogaster, Learn. Memory 11, 303–311 [CrossRef] [Google Scholar]
  • Tempel B.L., Bonini N., Dawson D.R., Quinn W.G. (1983) Reward learning in normal and mutant Drosophila, Proc. Natl Acad. Sci. USA 80, 1482–1486 [CrossRef] [Google Scholar]
  • Winston ML. (1987) The biology of the honey bee, London: Harvard University Press. [Google Scholar]