Free Access
Volume 41, Number 2, March-April 2010
Page(s) 194 - 202
Published online 26 January 2010
  • Albert S., Klaudiny J. (2004) The MRJP/YELLOW protein family of Apis mellifera: identification of new members in the EST library, J. Insect Physiol. 50, 51–59. [CrossRef] [PubMed] [Google Scholar]
  • Albert S., Bhattacharya D., Klaudiny J., Schmitzova J., Simüth J. (1999) The family of major royal jelly proteins and its evolution, J. Mol. Evol. 49, 290–297. [CrossRef] [PubMed] [Google Scholar]
  • Albert S., Klaudiny J., Simüth J. (1996) Newly discovered features of the updated sequence of royal jelly protein RJP57-1; longer repetitive region on C-terminus and homology to Drosophila melanogaster yellow protein, J. Apicult. Res. 35, 63–68. [Google Scholar]
  • Applied Biosystems (2001) Relative quantification of gene expression, 7700 Sequence Detection System User Bulletin 2. [Google Scholar]
  • Barchuk A.R., Cristino A.S., Kucharski R., Costa L.F., Simoes Z.L., Maleszka R. (2007) Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera, BMC Dev. Biol. 7, 70. [Google Scholar]
  • Bitterman M.E., Menzel R., Fietz A., Schafer S. (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera), J. Comp. Psychol. 97, 107–119. [CrossRef] [PubMed] [Google Scholar]
  • Cash A.C., Whitfield C.W., Ismail N., Robinson G.E. (2005) Behavior and the limits of genomic plasticity: power and replicability in microarray analysis of honeybee brains, Genes Brain Behav. 4, 267–271. [CrossRef] [PubMed] [Google Scholar]
  • Chen Y.P., Higgins J.A., Feldlaufer M.F. (2005) Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.), Appl. Environ. Microb. 71, 436–441. [Google Scholar]
  • Drapeau M.D. (2003) A novel hypothesis on the biochemical role of the Drosophila Yellow protein, Biochem. Bioph. Res. Co. 311, 1–3. [Google Scholar]
  • Drapeau M.D., Albert S., Kucharski R., Prusko C., Maleszka R. (2006) Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees, Genome Res. 16, 1385–1394. [CrossRef] [PubMed] [Google Scholar]
  • Durst C., Eichmuller S., Menzel R. (1994) Development and experience lead to increased volume of subcompartments of the honeybee mushroom body, Behav. Neural. Biol. 62, 259–263. [CrossRef] [PubMed] [Google Scholar]
  • Erber J., Masuhr T.H., Menzel R. (1980) Localization of short-term memory in the brain of the bee, Apis mellifera, Physiol. Entomol. 5, 343–358. [CrossRef] [Google Scholar]
  • Evans J.D., Wheeler D.E. (2001) Gene expression and the evolution of insect polyphenisms, Bioessays 23, 62–68. [CrossRef] [PubMed] [Google Scholar]
  • Fahrbach S.E., Robinson G.E. (1995) Behavioral development in the honey bee: toward the study of learning under natural conditions, Learn. Memory 2, 199–224. [CrossRef] [Google Scholar]
  • Fontana R., Mendes M.A., de Souza B.M., Konno K., Cesar L.M., Malaspina O., Palma M.S. (2004) Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera), Peptides 25, 919–928. [CrossRef] [PubMed] [Google Scholar]
  • Frisch K. von (1967) Honeybees: do they use direction and distance information provided by their dancers? Science 158, 1072–1076. [CrossRef] [PubMed] [Google Scholar]
  • Hammer M., Menzel R. (1995) Learning and memory in the honeybee, J. Neurosci. 15, 1617–1630. [PubMed] [Google Scholar]
  • Hanes J., Simüth J. (1992) Identification and partial characterization of the major royal jelly protein of the honey bee (Apis mellifera L.), J. Apicult. Res. 31, 22–26. [Google Scholar]
  • Heisenberg M. (1998) What do the mushroom bodies do for the insect brain? Learn. Memory 5, 1–10. [Google Scholar]
  • The Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honey bee Apis mellifera, Nature 443, 931–949. [Google Scholar]
  • Ichikawa N., Sasaki M. (2003) Importance of social stimuli for the development of learning capability in honeybees, Appl. Entomol. Zool. 38, 203–209. [CrossRef] [Google Scholar]
  • Kamakura M., Sakaki T. (2006) A hypopharyngeal gland protein of the worker honeybee Apis mellifera L. enhances proliferation of primary-cultured rat hepatocytes and suppresses apoptosis in the absence of serum, Protein Expres. Purif. 45, 307–314. [CrossRef] [Google Scholar]
  • Kamikouchi A., Takeuchi H., Sawata M., Natori S., Kubo T. (2000) Concentrated expression of Ca2+/calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybee Apis mellifera L., J. Comp. Neurol. 417, 501–510. [CrossRef] [PubMed] [Google Scholar]
  • Kamikouchi A., Takeuchi H., Sawata M., Ohashi K., Natori S., Kubo T. (1998) Preferential expression of the gene for a putative inositol 1,4,5-trisphosphate receptor homologue in the mushroom bodies of the brain of the worker honeybee Apis mellifera L., Biochem. Biophys. Res. Co. 242, 181–186. [CrossRef] [Google Scholar]
  • Klaudiny J., Kulifajova J., Crailsheim K., Simuth J. (1994) New approach to the study of division of labour in the honeybee colony (Apis mellifera L.), Apidologie 25, 596–600. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kubo T., Sasaki M., Nakamura J., Sasagawa H., Ohashi K., Takeuchi H., Natori S. (1996) Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L.) with age and/or role, J. Biochem. 119, 291–295. [PubMed] [Google Scholar]
  • Kucharski R., Maleszka R., Hayward D.C., Ball E.E. (1998) A royal jelly protein is expressed in a subset of Kenyon cells in the mushroom bodies of the honey bee brain, Naturwissenschaften 85, 343–346. [CrossRef] [PubMed] [Google Scholar]
  • Liang P., Pardee A.B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science 257, 967–971. [CrossRef] [PubMed] [Google Scholar]
  • Livesey F.J., Hunt S.P. (1996) Identifying changes in gene expression in the nervous system: mRNA differential display, Trends Neurosci. 19, 84–88. [CrossRef] [PubMed] [Google Scholar]
  • Majtan J., Kovacova E., Bilikova K., Simuth J. (2006) The immunostimulatory effect of the recombinant apalbumin 1-major honeybee royal jelly protein-on TNFalpha release, Int. Immunopharmacol. 6, 269–278. [CrossRef] [PubMed] [Google Scholar]
  • Maleszka R., Kucharski R. (2000) Analysis of Drosophila yellow-B cDNA reveals a new family of proteins related to the Royal Jelly proteins in the honeybee and to an orphan protein in an unusual bacterium Deinococcus radiodurans, Biochem. Biophys. Res. Co. 270, 773–776. [CrossRef] [Google Scholar]
  • Meller V.H., Davis R.L. (1996) Biochemistry of insect learning: lessons from bees and flies, Insect Biochem. Molec. 26, 327–335. [CrossRef] [Google Scholar]
  • Menzel R. (2001) Searching for the memory trace in a mini-brain, the honeybee, Learn. Memory 8, 53–62. [CrossRef] [Google Scholar]
  • Menzel R., Giurfa M. (2001) Cognitive architecture of a mini-brain: the honeybee, Trends Cogn. Sci. 5, 62–71. [CrossRef] [PubMed] [Google Scholar]
  • Menzel R., Müller U. (1996) Learning and memory in honeybees: from behavior to neural substrates, Annu. Rev. Neurosci. 19, 379–404. [CrossRef] [PubMed] [Google Scholar]
  • Nash W.G. (1976) Patterns of pigmentation color states regulated by the y locus in Drosophila melanogaster, Dev. Biol. 48, 336–343. [CrossRef] [PubMed] [Google Scholar]
  • Ohashi K., Natori S., Kubo T. (1997) Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L., Eur. J. Biochem. 249, 797–802. [CrossRef] [PubMed] [Google Scholar]
  • Robinson G.E. (1992) Regulation of division of labor in insect societies, Annu. Rev. Entomol. 37, 637–665. [CrossRef] [PubMed] [Google Scholar]
  • Robinson G.E., Fahrbach S.E., Winston M.L. (1997) Insect societies and the molecular biology of social behavior, Bioessays 19, 1099–1108. [CrossRef] [PubMed] [Google Scholar]
  • Robinson G.E., Grozinger C.M., Whitfield C.W. (2005) Sociogenomics: social life in molecular terms, Nat. Rev. Genet. 6, 257–270. [CrossRef] [PubMed] [Google Scholar]
  • Rybak J., Menzel R. (1998) Integrative properties of the Pe1 neuron, a unique mushroom body output neuron, Learn. Memory 5, 133–145. [Google Scholar]
  • Santos K.S., dos Santos L.D., Mendes M.A., de Souza B.M., Malaspina O., Palma M.S. (2005) Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.), Insect Biochem. Molec. 35, 85–91. [CrossRef] [Google Scholar]
  • Sawata M., Yoshino D., Takeuchi H., Kamikouchi A., Ohashi K., Kubo T. (2002) Identi?cation and punctate nuclear localization of a novel noncoding RNA, Ks-1, from the honeybee brain, RNA 8, 772–785. [CrossRef] [PubMed] [Google Scholar]
  • Simüth J. (2001) Some properties of the main protein of honeybee (Apis mellifera) royal jelly, Apidologie 32, 69–80. [CrossRef] [EDP Sciences] [Google Scholar]
  • Simüth J., Bilikova K., Kovacova E., Kuzmova Z., Schroder W. (2004) Immunochemical approach to detection of adulteration in honey: physiologically active royal jelly protein stimulating TNF-alpha release is a regular component of honey, J. Agr. Food Chem. 52, 2154–2158. [CrossRef] [Google Scholar]
  • Takeuchi H., Fujiyuki T., Shirai K., Matsuo Y., Kamikouchi A., Fujinawa Y., Kato A., Tsujimoto A., Kubo T. (2002) Identification of genes expressed referentially in the honeybee mushroom bodies by combination of differential display and cDNA microarray, FEBS Lett. 513, 230–234. [CrossRef] [PubMed] [Google Scholar]
  • Takeuchi H., Kage E., Sawata M., Kamikouchi A., Ohashi K., Ohara M., Fujiyuki T., Kunieda T., Sekimizu K., Natori S., Kubo T. (2001) Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain, Insect Mol. Biol. 10, 487–494. [CrossRef] [PubMed] [Google Scholar]
  • Takeuchi H., Yasuda A., Yasuda-Kamatani Y., Sawata M., Matsuo Y., Kato A., Tsujimoto A., Nakajima T., Kubo T. (2004) Prepro-tachykinin gene expression in the brain of the honeybee Apis mellifera, Cell Tissue Res. 316, 281–293. [CrossRef] [PubMed] [Google Scholar]
  • Thompson G.J., Kucharski R., Maleszka R., Oldroyd B.P. (2006) Towards a molecular definition of worker sterility: differential gene expression and reproductive plasticity in honey bees, Insect Mol. Biol. 15, 637–644. [PubMed] [Google Scholar]
  • Whitfield C.W., Band M.R., Bonaldo M.F., Kumar C.G., Liu L., Pardinas J.R., Robertson H.M., Soares M.B., Robinson G.E. (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee, Genome Res. 12, 555–566. [CrossRef] [PubMed] [Google Scholar]
  • Whitfield C.W., Cziko A.M., Robinson G.E. (2003) Gene expression profiles in the brain predict behavior in individual honey bees, Science 302, 296–299. [CrossRef] [PubMed] [Google Scholar]
  • Whitfield C.W., Ben-Shahar Y., Brillet C., Leoncini I., Crauser D., Leconte Y., Rodriguez-Zas S., Robinson G.E. (2006) Genomic dissection of behavioral maturation in the honey bee, Proc. Natl Acad. Sci. (USA) 103, 16068–16075. [Google Scholar]
  • Winston M.L. (1987) The Biology of the Honeybee, Harvard Univ. Press, Cambridge, pp. 1–281. [Google Scholar]
  • Yamazaki Y., Shirai K., Paul R.K., Fujiyuki T., Wakamoto A., Takeuchi H., Kubo T. (2006) Differential expression of HR38 in the mushroom bodies of the honeybee brain depends on the caste and division of labor, FEBS Lett. 580, 2667–2670. [CrossRef] [PubMed] [Google Scholar]